Введите задачу...
Математический анализ Примеры
Этап 1
Запишем в виде функции.
Этап 2
Этап 2.1
Переведем в .
Этап 2.2
Поскольку является константой относительно , производная по равна .
Этап 2.3
Производная по равна .
Этап 2.4
Упростим выражение.
Этап 2.4.1
Умножим на .
Этап 2.4.2
Изменим порядок множителей в .
Этап 3
Этап 3.1
Поскольку является константой относительно , производная по равна .
Этап 3.2
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 3.3
Производная по равна .
Этап 3.4
Возведем в степень .
Этап 3.5
Возведем в степень .
Этап 3.6
Применим правило степени для объединения показателей.
Этап 3.7
Добавим и .
Этап 3.8
Производная по равна .
Этап 3.9
Возведем в степень .
Этап 3.10
Применим правило степени для объединения показателей.
Этап 3.11
Добавим и .
Этап 3.12
Упростим.
Этап 3.12.1
Применим свойство дистрибутивности.
Этап 3.12.2
Объединим термины.
Этап 3.12.2.1
Умножим на .
Этап 3.12.2.2
Умножим на .
Этап 3.12.3
Изменим порядок членов.
Этап 4
Чтобы найти локальные максимумы и минимумы функции, приравняем производную к и решим полученное уравнение.
Этап 5
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 6
Этап 6.1
Приравняем к .
Этап 6.2
Решим относительно .
Этап 6.2.1
Возьмем обратный котангенс обеих частей уравнения, чтобы извлечь из котангенса.
Этап 6.2.2
Упростим правую часть.
Этап 6.2.2.1
Точное значение : .
Этап 6.2.3
Функция котангенса положительна в первом и третьем квадрантах. Для нахождения второго решения прибавим угол приведения из и найдем решение в четвертом квадранте.
Этап 6.2.4
Упростим .
Этап 6.2.4.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 6.2.4.2
Объединим дроби.
Этап 6.2.4.2.1
Объединим и .
Этап 6.2.4.2.2
Объединим числители над общим знаменателем.
Этап 6.2.4.3
Упростим числитель.
Этап 6.2.4.3.1
Перенесем влево от .
Этап 6.2.4.3.2
Добавим и .
Этап 6.2.5
Решение уравнения .
Этап 7
Этап 7.1
Приравняем к .
Этап 7.2
Множество значений косеканса: и . Поскольку не попадает в этот диапазон, решение отсутствует.
Нет решения
Нет решения
Этап 8
Окончательным решением являются все значения, при которых верно.
Этап 9
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 10
Этап 10.1
Упростим каждый член.
Этап 10.1.1
Точное значение : .
Этап 10.1.2
Возведение в любую положительную степень дает .
Этап 10.1.3
Умножим на .
Этап 10.1.4
Точное значение : .
Этап 10.1.5
Умножим на .
Этап 10.1.6
Точное значение : .
Этап 10.1.7
Единица в любой степени равна единице.
Этап 10.1.8
Умножим на .
Этап 10.2
Добавим и .
Этап 11
— локальный минимум, так как вторая производная положительная. Это называется тестом второй производной.
— локальный минимум
Этап 12
Этап 12.1
Заменим в этом выражении переменную на .
Этап 12.2
Упростим результат.
Этап 12.2.1
Точное значение : .
Этап 12.2.2
Сократим общий множитель .
Этап 12.2.2.1
Сократим общий множитель.
Этап 12.2.2.2
Перепишем это выражение.
Этап 12.2.3
Умножим на .
Этап 12.2.4
Окончательный ответ: .
Этап 13
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 14
Этап 14.1
Упростим каждый член.
Этап 14.1.1
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте. Сделаем выражение отрицательным, поскольку котангенс отрицателен в четвертом квадранте.
Этап 14.1.2
Точное значение : .
Этап 14.1.3
Умножим на .
Этап 14.1.4
Возведение в любую положительную степень дает .
Этап 14.1.5
Умножим на .
Этап 14.1.6
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте. Сделаем выражение отрицательным, поскольку косеканс отрицателен в четвертом квадранте.
Этап 14.1.7
Точное значение : .
Этап 14.1.8
Умножим .
Этап 14.1.8.1
Умножим на .
Этап 14.1.8.2
Умножим на .
Этап 14.1.9
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте. Сделаем выражение отрицательным, поскольку косеканс отрицателен в четвертом квадранте.
Этап 14.1.10
Точное значение : .
Этап 14.1.11
Умножим на .
Этап 14.1.12
Возведем в степень .
Этап 14.1.13
Умножим на .
Этап 14.2
Вычтем из .
Этап 15
— локальный максимум, так как вторая производная отрицательная. Это называется тестом второй производной.
— локальный максимум
Этап 16
Этап 16.1
Заменим в этом выражении переменную на .
Этап 16.2
Упростим результат.
Этап 16.2.1
Упростим знаменатель.
Этап 16.2.1.1
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте. Добавим минус к выражению, так как синус отрицательный в четвертом квадранте.
Этап 16.2.1.2
Точное значение : .
Этап 16.2.1.3
Умножим на .
Этап 16.2.2
Упростим выражение.
Этап 16.2.2.1
Разделим на .
Этап 16.2.2.2
Умножим на .
Этап 16.2.3
Окончательный ответ: .
Этап 17
Это локальные экстремумы .
— локальный минимум
— локальный максимум
Этап 18