Математический анализ Примеры

Найти локальный максимум и минимум y=4x-6 натуральный логарифм от x
Этап 1
Запишем в виде функции.
Этап 2
Найдем первую производную функции.
Нажмите для увеличения количества этапов...
Этап 2.1
По правилу суммы производная по имеет вид .
Этап 2.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.3
Умножим на .
Этап 2.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.3.2
Производная по равна .
Этап 2.3.3
Объединим и .
Этап 2.3.4
Вынесем знак минуса перед дробью.
Этап 2.4
Изменим порядок членов.
Этап 3
Найдем вторую производную функции.
Нажмите для увеличения количества этапов...
Этап 3.1
По правилу суммы производная по имеет вид .
Этап 3.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 3.2.1
Поскольку является константой относительно , производная по равна .
Этап 3.2.2
Перепишем в виде .
Этап 3.2.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.2.4
Умножим на .
Этап 3.3
Поскольку является константой относительно , производная относительно равна .
Этап 3.4
Упростим.
Нажмите для увеличения количества этапов...
Этап 3.4.1
Перепишем выражение, используя правило отрицательных степеней .
Этап 3.4.2
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 3.4.2.1
Объединим и .
Этап 3.4.2.2
Добавим и .
Этап 4
Чтобы найти локальные максимумы и минимумы функции, приравняем производную к и решим полученное уравнение.
Этап 5
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 5.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 5.1.1
По правилу суммы производная по имеет вид .
Этап 5.1.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 5.1.2.1
Поскольку является константой относительно , производная по равна .
Этап 5.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 5.1.2.3
Умножим на .
Этап 5.1.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 5.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 5.1.3.2
Производная по равна .
Этап 5.1.3.3
Объединим и .
Этап 5.1.3.4
Вынесем знак минуса перед дробью.
Этап 5.1.4
Изменим порядок членов.
Этап 5.2
Первая производная по равна .
Этап 6
Приравняем первую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 6.1
Пусть первая производная равна .
Этап 6.2
Вычтем из обеих частей уравнения.
Этап 6.3
Найдем НОК знаменателей членов уравнения.
Нажмите для увеличения количества этапов...
Этап 6.3.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 6.3.2
НОК единицы и любого выражения есть это выражение.
Этап 6.4
Каждый член в умножим на , чтобы убрать дроби.
Нажмите для увеличения количества этапов...
Этап 6.4.1
Умножим каждый член на .
Этап 6.4.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 6.4.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.4.2.1.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 6.4.2.1.2
Сократим общий множитель.
Этап 6.4.2.1.3
Перепишем это выражение.
Этап 6.5
Решим уравнение.
Нажмите для увеличения количества этапов...
Этап 6.5.1
Перепишем уравнение в виде .
Этап 6.5.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 6.5.2.1
Разделим каждый член на .
Этап 6.5.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 6.5.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.5.2.2.1.1
Сократим общий множитель.
Этап 6.5.2.2.1.2
Разделим на .
Этап 6.5.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 6.5.2.3.1
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 6.5.2.3.1.1
Вынесем множитель из .
Этап 6.5.2.3.1.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 6.5.2.3.1.2.1
Вынесем множитель из .
Этап 6.5.2.3.1.2.2
Сократим общий множитель.
Этап 6.5.2.3.1.2.3
Перепишем это выражение.
Этап 7
Найдем значения, при которых производная не определена.
Нажмите для увеличения количества этапов...
Этап 7.1
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 8
Критические точки, которые необходимо вычислить.
Этап 9
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 10
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 10.1
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 10.1.1
Применим правило умножения к .
Этап 10.1.2
Возведем в степень .
Этап 10.1.3
Возведем в степень .
Этап 10.2
Умножим числитель на величину, обратную знаменателю.
Этап 10.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 10.3.1
Вынесем множитель из .
Этап 10.3.2
Вынесем множитель из .
Этап 10.3.3
Сократим общий множитель.
Этап 10.3.4
Перепишем это выражение.
Этап 10.4
Объединим и .
Этап 10.5
Умножим на .
Этап 11
 — локальный минимум, так как вторая производная положительная. Это называется тестом второй производной.
 — локальный минимум
Этап 12
Найдем значение y, если .
Нажмите для увеличения количества этапов...
Этап 12.1
Заменим в этом выражении переменную на .
Этап 12.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 12.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 12.2.1.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 12.2.1.1.1
Вынесем множитель из .
Этап 12.2.1.1.2
Сократим общий множитель.
Этап 12.2.1.1.3
Перепишем это выражение.
Этап 12.2.1.2
Умножим на .
Этап 12.2.1.3
Упростим путем переноса под логарифм.
Этап 12.2.1.4
Применим правило умножения к .
Этап 12.2.1.5
Возведем в степень .
Этап 12.2.1.6
Возведем в степень .
Этап 12.2.2
Окончательный ответ: .
Этап 13
Это локальные экстремумы .
 — локальный минимум
Этап 14