Математический анализ Примеры

Найти функцию a'(x)=(2x^3-200)/(x^2)
Этап 1
Чтобы найти функцию , вычислим неопределенный интеграл производной .
Этап 2
Применим основные правила для показателей степени.
Нажмите для увеличения количества этапов...
Этап 2.1
Вынесем из знаменателя, возведя в степень.
Этап 2.2
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 2.2.1
Применим правило степени и перемножим показатели, .
Этап 2.2.2
Умножим на .
Этап 3
Умножим .
Этап 4
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.1
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 4.1.1
Перенесем .
Этап 4.1.2
Применим правило степени для объединения показателей.
Этап 4.1.3
Добавим и .
Этап 4.2
Упростим .
Этап 5
Разделим данный интеграл на несколько интегралов.
Этап 6
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 7
По правилу степени интеграл по имеет вид .
Этап 8
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 9
По правилу степени интеграл по имеет вид .
Этап 10
Упростим.
Нажмите для увеличения количества этапов...
Этап 10.1
Упростим.
Этап 10.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 10.2.1
Объединим и .
Этап 10.2.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 10.2.2.1
Сократим общий множитель.
Этап 10.2.2.2
Перепишем это выражение.
Этап 10.2.3
Умножим на .
Этап 10.2.4
Умножим на .
Этап 11
Функция получается интегрированием производной функции. Это подтверждается основной теоремой математического анализа.