Введите задачу...
Математический анализ Примеры
Этап 1
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 2
Этап 2.1
Подставим в уравнение. Это упростит использование формулы для корней квадратного уравнения.
Этап 2.2
Используем формулу для нахождения корней квадратного уравнения.
Этап 2.3
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 2.4
Упростим.
Этап 2.4.1
Упростим числитель.
Этап 2.4.1.1
Возведем в степень .
Этап 2.4.1.2
Умножим .
Этап 2.4.1.2.1
Умножим на .
Этап 2.4.1.2.2
Умножим на .
Этап 2.4.1.3
Вычтем из .
Этап 2.4.1.4
Перепишем в виде .
Этап 2.4.1.5
Перепишем в виде .
Этап 2.4.1.6
Перепишем в виде .
Этап 2.4.2
Умножим на .
Этап 2.5
Упростим выражение, которое нужно решить для части значения .
Этап 2.5.1
Упростим числитель.
Этап 2.5.1.1
Возведем в степень .
Этап 2.5.1.2
Умножим .
Этап 2.5.1.2.1
Умножим на .
Этап 2.5.1.2.2
Умножим на .
Этап 2.5.1.3
Вычтем из .
Этап 2.5.1.4
Перепишем в виде .
Этап 2.5.1.5
Перепишем в виде .
Этап 2.5.1.6
Перепишем в виде .
Этап 2.5.2
Умножим на .
Этап 2.5.3
Заменим на .
Этап 2.6
Упростим выражение, которое нужно решить для части значения .
Этап 2.6.1
Упростим числитель.
Этап 2.6.1.1
Возведем в степень .
Этап 2.6.1.2
Умножим .
Этап 2.6.1.2.1
Умножим на .
Этап 2.6.1.2.2
Умножим на .
Этап 2.6.1.3
Вычтем из .
Этап 2.6.1.4
Перепишем в виде .
Этап 2.6.1.5
Перепишем в виде .
Этап 2.6.1.6
Перепишем в виде .
Этап 2.6.2
Умножим на .
Этап 2.6.3
Заменим на .
Этап 2.7
Окончательный ответ является комбинацией обоих решений.
Этап 2.8
Подставим вещественное значение обратно в решенное уравнение.
Этап 2.9
Решим первое уравнение относительно .
Этап 2.10
Решим уравнение относительно .
Этап 2.10.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 2.10.2
Упростим .
Этап 2.10.2.1
Перепишем в виде .
Этап 2.10.2.2
Упростим знаменатель.
Этап 2.10.2.2.1
Перепишем в виде .
Этап 2.10.2.2.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 2.10.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 2.10.3.1
Сначала с помощью положительного значения найдем первое решение.
Этап 2.10.3.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 2.10.3.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 2.11
Решим второе уравнение относительно .
Этап 2.12
Решим уравнение относительно .
Этап 2.12.1
Избавимся от скобок.
Этап 2.12.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 2.12.3
Упростим .
Этап 2.12.3.1
Перепишем в виде .
Этап 2.12.3.2
Упростим знаменатель.
Этап 2.12.3.2.1
Перепишем в виде .
Этап 2.12.3.2.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 2.12.4
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 2.12.4.1
Сначала с помощью положительного значения найдем первое решение.
Этап 2.12.4.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 2.12.4.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 2.13
Решением является .
Этап 3
Область определения ― все вещественные числа.
Интервальное представление:
Обозначение построения множества:
Этап 4
Множество значений ― это множество всех допустимых значений . Используем график, чтобы найти множество значений.
Интервальное представление:
Обозначение построения множества:
Этап 5
Определим область определения и множество значений.
Область определения:
Диапазон:
Этап 6