Введите задачу...
Математический анализ Примеры
,
Этап 1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Интервальное представление:
Обозначение построения множества:
Этап 2
— непрерывное выражение в области .
— непрерывное выражение
Этап 3
Среднее значение функции на интервале определяется как .
Этап 4
Подставим фактические значения в формулу для среднего значения функции.
Этап 5
Разделим данный интеграл на несколько интегралов.
Этап 6
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 7
По правилу степени интеграл по имеет вид .
Этап 8
Объединим и .
Этап 9
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 10
По правилу степени интеграл по имеет вид .
Этап 11
Объединим и .
Этап 12
Применим правило дифференцирования постоянных функций.
Этап 13
Этап 13.1
Найдем значение в и в .
Этап 13.2
Найдем значение в и в .
Этап 13.3
Найдем значение в и в .
Этап 13.4
Упростим.
Этап 13.4.1
Возведем в степень .
Этап 13.4.2
Возведем в степень .
Этап 13.4.3
Вынесем знак минуса перед дробью.
Этап 13.4.4
Умножим на .
Этап 13.4.5
Умножим на .
Этап 13.4.6
Объединим числители над общим знаменателем.
Этап 13.4.7
Добавим и .
Этап 13.4.8
Сократим общий множитель и .
Этап 13.4.8.1
Вынесем множитель из .
Этап 13.4.8.2
Сократим общие множители.
Этап 13.4.8.2.1
Вынесем множитель из .
Этап 13.4.8.2.2
Сократим общий множитель.
Этап 13.4.8.2.3
Перепишем это выражение.
Этап 13.4.8.2.4
Разделим на .
Этап 13.4.9
Умножим на .
Этап 13.4.10
Возведем в степень .
Этап 13.4.11
Возведем в степень .
Этап 13.4.12
Объединим числители над общим знаменателем.
Этап 13.4.13
Вычтем из .
Этап 13.4.14
Сократим общий множитель и .
Этап 13.4.14.1
Вынесем множитель из .
Этап 13.4.14.2
Сократим общие множители.
Этап 13.4.14.2.1
Вынесем множитель из .
Этап 13.4.14.2.2
Сократим общий множитель.
Этап 13.4.14.2.3
Перепишем это выражение.
Этап 13.4.14.2.4
Разделим на .
Этап 13.4.15
Умножим на .
Этап 13.4.16
Вычтем из .
Этап 13.4.17
Умножим на .
Этап 13.4.18
Умножим на .
Этап 13.4.19
Добавим и .
Этап 13.4.20
Добавим и .
Этап 14
Добавим и .
Этап 15
Этап 15.1
Вынесем множитель из .
Этап 15.2
Сократим общий множитель.
Этап 15.3
Перепишем это выражение.
Этап 16