Введите задачу...
Математический анализ Примеры
,
Этап 1
Этап 1.1
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 1.2
Решим относительно .
Этап 1.2.1
Вычтем из обеих частей уравнения.
Этап 1.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 1.2.3
Перепишем в виде .
Этап 1.2.4
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 1.2.4.1
Сначала с помощью положительного значения найдем первое решение.
Этап 1.2.4.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 1.2.4.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 1.3
Область определения ― все вещественные числа.
Интервальное представление:
Обозначение построения множества:
Интервальное представление:
Обозначение построения множества:
Этап 2
— непрерывное выражение в области .
— непрерывное выражение
Этап 3
Среднее значение функции на интервале определяется как .
Этап 4
Подставим фактические значения в формулу для среднего значения функции.
Этап 5
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 6
Этап 6.1
Пусть . Найдем .
Этап 6.1.1
Дифференцируем .
Этап 6.1.2
По правилу суммы производная по имеет вид .
Этап 6.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 6.1.4
Поскольку является константой относительно , производная относительно равна .
Этап 6.1.5
Добавим и .
Этап 6.2
Подставим нижнее предельное значение вместо в .
Этап 6.3
Упростим.
Этап 6.3.1
Возведем в степень .
Этап 6.3.2
Добавим и .
Этап 6.4
Подставим верхнее предельное значение вместо в .
Этап 6.5
Упростим.
Этап 6.5.1
Возведем в степень .
Этап 6.5.2
Добавим и .
Этап 6.6
Значения, найденные для и , будут использованы для вычисления данного определенного интеграла.
Этап 6.7
Переформулируем задачу, используя , и новые пределы интегрирования.
Этап 7
Этап 7.1
Умножим на .
Этап 7.2
Перенесем влево от .
Этап 8
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 9
Объединим и .
Этап 10
Интеграл по имеет вид .
Этап 11
Этап 11.1
Найдем значение в и в .
Этап 11.2
Упростим.
Этап 11.2.1
Вычтем из .
Этап 11.2.2
Умножим на .
Этап 12
Добавим и .
Этап 13
Умножим на .
Этап 14