Введите задачу...
Математический анализ Примеры
,
Этап 1
Этап 1.1
Зададим подкоренное выражение в большим или равным , чтобы узнать, где определено данное выражение.
Этап 1.2
Вычтем из обеих частей неравенства.
Этап 1.3
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 1.4
Решим относительно .
Этап 1.4.1
Чтобы избавиться от радикала в левой части уравнения, возведем обе части уравнения в квадрат.
Этап 1.4.2
Упростим каждую часть уравнения.
Этап 1.4.2.1
С помощью запишем в виде .
Этап 1.4.2.2
Упростим левую часть.
Этап 1.4.2.2.1
Упростим .
Этап 1.4.2.2.1.1
Перемножим экспоненты в .
Этап 1.4.2.2.1.1.1
Применим правило степени и перемножим показатели, .
Этап 1.4.2.2.1.1.2
Сократим общий множитель .
Этап 1.4.2.2.1.1.2.1
Сократим общий множитель.
Этап 1.4.2.2.1.1.2.2
Перепишем это выражение.
Этап 1.4.2.2.1.2
Упростим.
Этап 1.4.2.3
Упростим правую часть.
Этап 1.4.2.3.1
Возведение в любую положительную степень дает .
Этап 1.4.3
Вычтем из обеих частей уравнения.
Этап 1.5
Область определения ― это все значения , при которых выражение определено.
Интервальное представление:
Обозначение построения множества:
Интервальное представление:
Обозначение построения множества:
Этап 2
— непрерывное выражение в области .
— непрерывное выражение
Этап 3
Среднее значение функции на интервале определяется как .
Этап 4
Подставим фактические значения в формулу для среднего значения функции.
Этап 5
Этап 5.1
Пусть . Найдем .
Этап 5.1.1
Дифференцируем .
Этап 5.1.2
По правилу суммы производная по имеет вид .
Этап 5.1.3
Поскольку является константой относительно , производная относительно равна .
Этап 5.1.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 5.1.5
Добавим и .
Этап 5.2
Подставим нижнее предельное значение вместо в .
Этап 5.3
Добавим и .
Этап 5.4
Подставим верхнее предельное значение вместо в .
Этап 5.5
Добавим и .
Этап 5.6
Значения, найденные для и , будут использованы для вычисления данного определенного интеграла.
Этап 5.7
Переформулируем задачу, используя , и новые пределы интегрирования.
Этап 6
Этап 6.1
С помощью запишем в виде .
Этап 6.2
Вынесем из знаменателя, возведя в степень.
Этап 6.3
Перемножим экспоненты в .
Этап 6.3.1
Применим правило степени и перемножим показатели, .
Этап 6.3.2
Объединим и .
Этап 6.3.3
Вынесем знак минуса перед дробью.
Этап 7
По правилу степени интеграл по имеет вид .
Этап 8
Этап 8.1
Найдем значение в и в .
Этап 8.2
Упростим.
Этап 8.2.1
Перепишем в виде .
Этап 8.2.2
Применим правило степени и перемножим показатели, .
Этап 8.2.3
Сократим общий множитель .
Этап 8.2.3.1
Сократим общий множитель.
Этап 8.2.3.2
Перепишем это выражение.
Этап 8.2.4
Найдем экспоненту.
Этап 8.2.5
Умножим на .
Этап 8.2.6
Единица в любой степени равна единице.
Этап 8.2.7
Умножим на .
Этап 8.2.8
Вычтем из .
Этап 9
Этап 9.1
Умножим на .
Этап 9.2
Добавим и .
Этап 10
Объединим и .
Этап 11