Математический анализ Примеры

Найти локальный максимум и минимум f(x)=12x^2-2x^3+3y^2+6xy
Этап 1
Найдем первую производную функции.
Нажмите для увеличения количества этапов...
Этап 1.1
По правилу суммы производная по имеет вид .
Этап 1.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Поскольку является константой относительно , производная по равна .
Этап 1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2.3
Умножим на .
Этап 1.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.3.1
Поскольку является константой относительно , производная по равна .
Этап 1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.3
Умножим на .
Этап 1.4
Поскольку является константой относительно , производная относительно равна .
Этап 1.5
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.5.1
Поскольку является константой относительно , производная по равна .
Этап 1.5.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.5.3
Умножим на .
Этап 1.6
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.6.1
Добавим и .
Этап 1.6.2
Изменим порядок членов.
Этап 2
Найдем вторую производную функции.
Нажмите для увеличения количества этапов...
Этап 2.1
По правилу суммы производная по имеет вид .
Этап 2.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.3
Умножим на .
Этап 2.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.3
Умножим на .
Этап 2.4
Продифференцируем, используя правило константы.
Нажмите для увеличения количества этапов...
Этап 2.4.1
Поскольку является константой относительно , производная относительно равна .
Этап 2.4.2
Добавим и .
Этап 3
Чтобы найти локальные максимумы и минимумы функции, приравняем производную к и решим полученное уравнение.
Этап 4
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 4.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 4.1.1
По правилу суммы производная по имеет вид .
Этап 4.1.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 4.1.2.1
Поскольку является константой относительно , производная по равна .
Этап 4.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.1.2.3
Умножим на .
Этап 4.1.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 4.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 4.1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.1.3.3
Умножим на .
Этап 4.1.4
Поскольку является константой относительно , производная относительно равна .
Этап 4.1.5
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 4.1.5.1
Поскольку является константой относительно , производная по равна .
Этап 4.1.5.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.1.5.3
Умножим на .
Этап 4.1.6
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.1.6.1
Добавим и .
Этап 4.1.6.2
Изменим порядок членов.
Этап 4.2
Первая производная по равна .
Этап 5
Приравняем первую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 5.1
Пусть первая производная равна .
Этап 5.2
Используем формулу для нахождения корней квадратного уравнения.
Этап 5.3
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 5.4
Упростим.
Нажмите для увеличения количества этапов...
Этап 5.4.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 5.4.1.1
Возведем в степень .
Этап 5.4.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 5.4.1.2.1
Умножим на .
Этап 5.4.1.2.2
Умножим на .
Этап 5.4.1.3
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 5.4.1.3.1
Вынесем множитель из .
Этап 5.4.1.3.2
Вынесем множитель из .
Этап 5.4.1.4
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 5.4.1.4.1
Перепишем в виде .
Этап 5.4.1.4.2
Перепишем в виде .
Этап 5.4.1.5
Вынесем члены из-под знака корня.
Этап 5.4.1.6
Возведем в степень .
Этап 5.4.2
Умножим на .
Этап 5.4.3
Упростим .
Этап 5.5
Упростим выражение, которое нужно решить для части значения .
Нажмите для увеличения количества этапов...
Этап 5.5.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 5.5.1.1
Возведем в степень .
Этап 5.5.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 5.5.1.2.1
Умножим на .
Этап 5.5.1.2.2
Умножим на .
Этап 5.5.1.3
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 5.5.1.3.1
Вынесем множитель из .
Этап 5.5.1.3.2
Вынесем множитель из .
Этап 5.5.1.4
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 5.5.1.4.1
Перепишем в виде .
Этап 5.5.1.4.2
Перепишем в виде .
Этап 5.5.1.5
Вынесем члены из-под знака корня.
Этап 5.5.1.6
Возведем в степень .
Этап 5.5.2
Умножим на .
Этап 5.5.3
Упростим .
Этап 5.5.4
Заменим на .
Этап 5.6
Упростим выражение, которое нужно решить для части значения .
Нажмите для увеличения количества этапов...
Этап 5.6.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 5.6.1.1
Возведем в степень .
Этап 5.6.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 5.6.1.2.1
Умножим на .
Этап 5.6.1.2.2
Умножим на .
Этап 5.6.1.3
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 5.6.1.3.1
Вынесем множитель из .
Этап 5.6.1.3.2
Вынесем множитель из .
Этап 5.6.1.4
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 5.6.1.4.1
Перепишем в виде .
Этап 5.6.1.4.2
Перепишем в виде .
Этап 5.6.1.5
Вынесем члены из-под знака корня.
Этап 5.6.1.6
Возведем в степень .
Этап 5.6.2
Умножим на .
Этап 5.6.3
Упростим .
Этап 5.6.4
Заменим на .
Этап 5.7
Окончательный ответ является комбинацией обоих решений.
Этап 6
Найдем значения, при которых производная не определена.
Нажмите для увеличения количества этапов...
Этап 6.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Этап 7
Критические точки, которые необходимо вычислить.
Этап 8
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 9
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 9.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 9.1.1
Применим свойство дистрибутивности.
Этап 9.1.2
Умножим на .
Этап 9.2
Объединим противоположные члены в .
Нажмите для увеличения количества этапов...
Этап 9.2.1
Добавим и .
Этап 9.2.2
Вычтем из .
Этап 10
Так как первая производная не изменила знак, локальные экстремумы отсутствуют.
Нет локальных экстремумов
Этап 11