Введите задачу...
Математический анализ Примеры
Этап 1
Поскольку является константой относительно , производная по равна .
Этап 2
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 3
Производная по равна .
Этап 4
Этап 4.1
Применим правило степени для объединения показателей.
Этап 4.2
Добавим и .
Этап 5
Этап 5.1
Чтобы применить цепное правило, зададим как .
Этап 5.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 5.3
Заменим все вхождения на .
Этап 6
Перенесем влево от .
Этап 7
Производная по равна .
Этап 8
Возведем в степень .
Этап 9
Возведем в степень .
Этап 10
Применим правило степени для объединения показателей.
Этап 11
Добавим и .
Этап 12
Возведем в степень .
Этап 13
Возведем в степень .
Этап 14
Применим правило степени для объединения показателей.
Этап 15
Добавим и .
Этап 16
Этап 16.1
Применим свойство дистрибутивности.
Этап 16.2
Умножим на .
Этап 16.3
Изменим порядок членов.