Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
По правилу суммы производная по имеет вид .
Этап 1.2
Найдем значение .
Этап 1.2.1
Поскольку является константой относительно , производная по равна .
Этап 1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2.3
Умножим на .
Этап 1.3
Найдем значение .
Этап 1.3.1
Поскольку является константой относительно , производная по равна .
Этап 1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.3
Умножим на .
Этап 1.4
Найдем значение .
Этап 1.4.1
Поскольку является константой относительно , производная по равна .
Этап 1.4.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.4.3
Умножим на .
Этап 2
Этап 2.1
По правилу суммы производная по имеет вид .
Этап 2.2
Найдем значение .
Этап 2.2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.3
Умножим на .
Этап 2.3
Найдем значение .
Этап 2.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.3
Умножим на .
Этап 2.4
Найдем значение .
Этап 2.4.1
Поскольку является константой относительно , производная по равна .
Этап 2.4.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.4.3
Умножим на .
Этап 3
Чтобы найти локальные максимумы и минимумы функции, приравняем производную к и решим полученное уравнение.
Этап 4
Этап 4.1
Найдем первую производную.
Этап 4.1.1
По правилу суммы производная по имеет вид .
Этап 4.1.2
Найдем значение .
Этап 4.1.2.1
Поскольку является константой относительно , производная по равна .
Этап 4.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.1.2.3
Умножим на .
Этап 4.1.3
Найдем значение .
Этап 4.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 4.1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.1.3.3
Умножим на .
Этап 4.1.4
Найдем значение .
Этап 4.1.4.1
Поскольку является константой относительно , производная по равна .
Этап 4.1.4.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.1.4.3
Умножим на .
Этап 4.2
Первая производная по равна .
Этап 5
Этап 5.1
Пусть первая производная равна .
Этап 5.2
Вынесем множитель из .
Этап 5.2.1
Вынесем множитель из .
Этап 5.2.2
Вынесем множитель из .
Этап 5.2.3
Вынесем множитель из .
Этап 5.2.4
Вынесем множитель из .
Этап 5.2.5
Вынесем множитель из .
Этап 5.3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 5.4
Приравняем к , затем решим относительно .
Этап 5.4.1
Приравняем к .
Этап 5.4.2
Решим относительно .
Этап 5.4.2.1
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 5.4.2.2
Упростим .
Этап 5.4.2.2.1
Перепишем в виде .
Этап 5.4.2.2.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 5.4.2.2.3
Плюс или минус равно .
Этап 5.5
Приравняем к , затем решим относительно .
Этап 5.5.1
Приравняем к .
Этап 5.5.2
Решим относительно .
Этап 5.5.2.1
Используем формулу для нахождения корней квадратного уравнения.
Этап 5.5.2.2
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 5.5.2.3
Упростим.
Этап 5.5.2.3.1
Упростим числитель.
Этап 5.5.2.3.1.1
Возведем в степень .
Этап 5.5.2.3.1.2
Умножим .
Этап 5.5.2.3.1.2.1
Умножим на .
Этап 5.5.2.3.1.2.2
Умножим на .
Этап 5.5.2.3.1.3
Вычтем из .
Этап 5.5.2.3.1.4
Перепишем в виде .
Этап 5.5.2.3.1.5
Перепишем в виде .
Этап 5.5.2.3.1.6
Перепишем в виде .
Этап 5.5.2.3.2
Умножим на .
Этап 5.5.2.4
Упростим выражение, которое нужно решить для части значения .
Этап 5.5.2.4.1
Упростим числитель.
Этап 5.5.2.4.1.1
Возведем в степень .
Этап 5.5.2.4.1.2
Умножим .
Этап 5.5.2.4.1.2.1
Умножим на .
Этап 5.5.2.4.1.2.2
Умножим на .
Этап 5.5.2.4.1.3
Вычтем из .
Этап 5.5.2.4.1.4
Перепишем в виде .
Этап 5.5.2.4.1.5
Перепишем в виде .
Этап 5.5.2.4.1.6
Перепишем в виде .
Этап 5.5.2.4.2
Умножим на .
Этап 5.5.2.4.3
Заменим на .
Этап 5.5.2.5
Упростим выражение, которое нужно решить для части значения .
Этап 5.5.2.5.1
Упростим числитель.
Этап 5.5.2.5.1.1
Возведем в степень .
Этап 5.5.2.5.1.2
Умножим .
Этап 5.5.2.5.1.2.1
Умножим на .
Этап 5.5.2.5.1.2.2
Умножим на .
Этап 5.5.2.5.1.3
Вычтем из .
Этап 5.5.2.5.1.4
Перепишем в виде .
Этап 5.5.2.5.1.5
Перепишем в виде .
Этап 5.5.2.5.1.6
Перепишем в виде .
Этап 5.5.2.5.2
Умножим на .
Этап 5.5.2.5.3
Заменим на .
Этап 5.5.2.6
Окончательный ответ является комбинацией обоих решений.
Этап 5.6
Окончательным решением являются все значения, при которых верно.
Этап 6
Этап 6.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Этап 7
Критические точки, которые необходимо вычислить.
Этап 8
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 9
Этап 9.1
Упростим каждый член.
Этап 9.1.1
Возведение в любую положительную степень дает .
Этап 9.1.2
Умножим на .
Этап 9.1.3
Возведение в любую положительную степень дает .
Этап 9.1.4
Умножим на .
Этап 9.1.5
Умножим на .
Этап 9.2
Упростим путем добавления чисел.
Этап 9.2.1
Добавим и .
Этап 9.2.2
Добавим и .
Этап 10
Этап 10.1
Разобьем на отдельные интервалы в окрестности значений , при которых первая производная равна или не определена.
Этап 10.2
Подставим любое число такое, что , из интервала в первую производную , чтобы проверить знак результата (отрицательный или положительный).
Этап 10.2.1
Заменим в этом выражении переменную на .
Этап 10.2.2
Упростим результат.
Этап 10.2.2.1
Упростим каждый член.
Этап 10.2.2.1.1
Возведем в степень .
Этап 10.2.2.1.2
Умножим на .
Этап 10.2.2.1.3
Возведем в степень .
Этап 10.2.2.1.4
Умножим на .
Этап 10.2.2.1.5
Возведем в степень .
Этап 10.2.2.1.6
Умножим на .
Этап 10.2.2.2
Упростим путем вычитания чисел.
Этап 10.2.2.2.1
Вычтем из .
Этап 10.2.2.2.2
Вычтем из .
Этап 10.2.2.3
Окончательный ответ: .
Этап 10.3
Подставим любое число такое, что , из интервала в первую производную , чтобы проверить знак результата (отрицательный или положительный).
Этап 10.3.1
Заменим в этом выражении переменную на .
Этап 10.3.2
Упростим результат.
Этап 10.3.2.1
Упростим каждый член.
Этап 10.3.2.1.1
Возведем в степень .
Этап 10.3.2.1.2
Умножим на .
Этап 10.3.2.1.3
Возведем в степень .
Этап 10.3.2.1.4
Умножим на .
Этап 10.3.2.1.5
Возведем в степень .
Этап 10.3.2.1.6
Умножим на .
Этап 10.3.2.2
Упростим путем сложения и вычитания.
Этап 10.3.2.2.1
Добавим и .
Этап 10.3.2.2.2
Вычтем из .
Этап 10.3.2.3
Окончательный ответ: .
Этап 10.4
Поскольку первая производная не меняет знак в окрестности , в этой точке нет ни локального максимума, ни локального минимума.
Не локальный максимум или минимум
Этап 10.5
Локальный минимум или минимум для не найден.
Нет локального максимума или минимума
Нет локального максимума или минимума
Этап 11