Математический анализ Примеры

Найти локальный максимум и минимум f(x)=32x^0.25
Этап 1
Найдем первую производную функции.
Нажмите для увеличения количества этапов...
Этап 1.1
Поскольку является константой относительно , производная по равна .
Этап 1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3
Умножим на .
Этап 1.4
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.4.1
Перепишем выражение, используя правило отрицательных степеней .
Этап 1.4.2
Объединим и .
Этап 2
Найдем вторую производную функции.
Нажмите для увеличения количества этапов...
Этап 2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2
Применим основные правила для показателей степени.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Перепишем в виде .
Этап 2.2.2
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 2.2.2.1
Применим правило степени и перемножим показатели, .
Этап 2.2.2.2
Умножим на .
Этап 2.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.4
Умножим на .
Этап 2.5
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.5.1
Перепишем выражение, используя правило отрицательных степеней .
Этап 2.5.2
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 2.5.2.1
Объединим и .
Этап 2.5.2.2
Вынесем знак минуса перед дробью.
Этап 3
Чтобы найти локальные максимумы и минимумы функции, приравняем производную к и решим полученное уравнение.
Этап 4
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 4.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 4.1.1
Поскольку является константой относительно , производная по равна .
Этап 4.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.1.3
Умножим на .
Этап 4.1.4
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.1.4.1
Перепишем выражение, используя правило отрицательных степеней .
Этап 4.1.4.2
Объединим и .
Этап 4.2
Первая производная по равна .
Этап 5
Приравняем первую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 5.1
Пусть первая производная равна .
Этап 5.2
Приравняем числитель к нулю.
Этап 5.3
Поскольку , решения отсутствуют.
Нет решения
Нет решения
Этап 6
Найдем значения, при которых производная не определена.
Нажмите для увеличения количества этапов...
Этап 6.1
Преобразуем выражения, перейдя от дробных степеней к радикалам.
Нажмите для увеличения количества этапов...
Этап 6.1.1
Переведем в дробь.
Нажмите для увеличения количества этапов...
Этап 6.1.1.1
Умножим на ,чтобы избавиться от знаков после запятой.
Этап 6.1.1.2
Умножим на .
Этап 6.1.1.3
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 6.1.1.3.1
Вынесем множитель из .
Этап 6.1.1.3.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 6.1.1.3.2.1
Вынесем множитель из .
Этап 6.1.1.3.2.2
Сократим общий множитель.
Этап 6.1.1.3.2.3
Перепишем это выражение.
Этап 6.1.2
Применим правило , чтобы представить возведение в степень в виде радикала.
Этап 6.2
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 6.3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.3.1
Чтобы избавиться от знака корня в левой части уравнения, возведем обе части в степень .
Этап 6.3.2
Упростим каждую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 6.3.2.1
С помощью запишем в виде .
Этап 6.3.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 6.3.2.2.1
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 6.3.2.2.1.1
Применим правило степени и перемножим показатели, .
Этап 6.3.2.2.1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.3.2.2.1.2.1
Сократим общий множитель.
Этап 6.3.2.2.1.2.2
Перепишем это выражение.
Этап 6.3.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 6.3.2.3.1
Возведение в любую положительную степень дает .
Этап 6.3.3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.3.3.1
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 6.3.3.2
Упростим .
Нажмите для увеличения количества этапов...
Этап 6.3.3.2.1
Перепишем в виде .
Этап 6.3.3.2.2
Вынесем члены из-под знака корня, предполагая, что это вещественные числа.
Этап 6.4
Зададим подкоренное выражение в меньшим , чтобы узнать, где данное выражение не определено.
Этап 6.5
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.5.1
Возьмем указанный корень от обеих частей неравенства, чтобы исключить член со степенью в левой части.
Этап 6.5.2
Упростим уравнение.
Нажмите для увеличения количества этапов...
Этап 6.5.2.1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 6.5.2.1.1
Вынесем члены из-под знака корня.
Этап 6.5.2.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 6.5.2.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 6.5.2.2.1.1
Перепишем в виде .
Этап 6.5.2.2.1.2
Вынесем члены из-под знака корня.
Этап 6.6
Уравнение не определено, если знаменатель равен , аргумент под знаком квадратного корня меньше или аргумент под знаком логарифма меньше или равен .
Этап 7
Критические точки, которые необходимо вычислить.
Этап 8
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 9
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 9.1
Возведение в любую положительную степень дает .
Этап 9.2
Выражение содержит деление на . Выражение не определено.
Неопределенные
Неопределенные
Этап 10
Так как первая производная не изменила знак, локальные экстремумы отсутствуют.
Нет локальных экстремумов
Этап 11