Математический анализ Примеры

Найти локальный максимум и минимум f(x)=3cos(x)-cos(x)^3
Этап 1
Найдем первую производную функции.
Нажмите для увеличения количества этапов...
Этап 1.1
По правилу суммы производная по имеет вид .
Этап 1.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Поскольку является константой относительно , производная по равна .
Этап 1.2.2
Производная по равна .
Этап 1.2.3
Умножим на .
Этап 1.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.3.1
Поскольку является константой относительно , производная по равна .
Этап 1.3.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 1.3.2.1
Чтобы применить цепное правило, зададим как .
Этап 1.3.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.2.3
Заменим все вхождения на .
Этап 1.3.3
Производная по равна .
Этап 1.3.4
Умножим на .
Этап 1.3.5
Умножим на .
Этап 1.4
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.4.1
Изменим порядок членов.
Этап 1.4.2
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 1.4.2.1
Вынесем множитель из .
Этап 1.4.2.2
Вынесем множитель из .
Этап 1.4.2.3
Вынесем множитель из .
Этап 1.4.3
Изменим порядок и .
Этап 1.4.4
Перепишем в виде .
Этап 1.4.5
Вынесем множитель из .
Этап 1.4.6
Вынесем множитель из .
Этап 1.4.7
Перепишем в виде .
Этап 1.4.8
Применим формулу Пифагора.
Этап 1.4.9
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 1.4.9.1
Перенесем .
Этап 1.4.9.2
Умножим на .
Нажмите для увеличения количества этапов...
Этап 1.4.9.2.1
Возведем в степень .
Этап 1.4.9.2.2
Применим правило степени для объединения показателей.
Этап 1.4.9.3
Добавим и .
Этап 1.4.10
Умножим на .
Этап 2
Найдем вторую производную функции.
Нажмите для увеличения количества этапов...
Этап 2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.2.1
Чтобы применить цепное правило, зададим как .
Этап 2.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.3
Заменим все вхождения на .
Этап 2.3
Умножим на .
Этап 2.4
Производная по равна .
Этап 3
Чтобы найти локальные максимумы и минимумы функции, приравняем производную к и решим полученное уравнение.
Этап 4
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 4.1
Разделим каждый член на .
Этап 4.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.2.1.1
Сократим общий множитель.
Этап 4.2.1.2
Разделим на .
Этап 4.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 4.3.1
Разделим на .
Этап 5
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 6
Упростим .
Нажмите для увеличения количества этапов...
Этап 6.1
Перепишем в виде .
Этап 6.2
Вынесем члены из-под знака корня, предполагая, что это вещественные числа.
Этап 7
Возьмем обратный синус обеих частей уравнения, чтобы извлечь из синуса.
Этап 8
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 8.1
Точное значение : .
Этап 9
Функция синуса положительна в первом и втором квадрантах. Для нахождения второго решения вычтем угол приведения из и найдем решение во втором квадранте.
Этап 10
Вычтем из .
Этап 11
Решение уравнения .
Этап 12
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 13
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 13.1
Точное значение : .
Этап 13.2
Возведение в любую положительную степень дает .
Этап 13.3
Умножим на .
Этап 13.4
Точное значение : .
Этап 13.5
Умножим на .
Этап 14
Поскольку есть по крайней мере одна точка с или неопределенной второй производной, изучим изменение знака первой производной.
Нажмите для увеличения количества этапов...
Этап 14.1
Разобьем на отдельные интервалы в окрестности значений , при которых первая производная равна или не определена.
Этап 14.2
Подставим любое число такое, что , из интервала в первую производную , чтобы проверить знак результата (отрицательный или положительный).
Нажмите для увеличения количества этапов...
Этап 14.2.1
Заменим в этом выражении переменную на .
Этап 14.2.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 14.2.2.1
Найдем значение .
Этап 14.2.2.2
Возведем в степень .
Этап 14.2.2.3
Умножим на .
Этап 14.2.2.4
Окончательный ответ: .
Этап 14.3
Подставим любое число такое, что , из интервала в первую производную , чтобы проверить знак результата (отрицательный или положительный).
Нажмите для увеличения количества этапов...
Этап 14.3.1
Заменим в этом выражении переменную на .
Этап 14.3.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 14.3.2.1
Найдем значение .
Этап 14.3.2.2
Возведем в степень .
Этап 14.3.2.3
Умножим на .
Этап 14.3.2.4
Окончательный ответ: .
Этап 14.4
Подставим любое число такое, что , из интервала в первую производную , чтобы проверить знак результата (отрицательный или положительный).
Нажмите для увеличения количества этапов...
Этап 14.4.1
Заменим в этом выражении переменную на .
Этап 14.4.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 14.4.2.1
Найдем значение .
Этап 14.4.2.2
Возведем в степень .
Этап 14.4.2.3
Умножим на .
Этап 14.4.2.4
Окончательный ответ: .
Этап 14.5
Поскольку первая производная меняет знак с положительного на отрицательный в окрестности ,  — локальный максимум.
 — локальный максимум
Этап 14.6
Поскольку первая производная меняет знак с отрицательного на положительный в окрестности ,  — локальный минимум.
 — локальный минимум
Этап 14.7
Это локальные экстремумы .
 — локальный максимум
 — локальный минимум
 — локальный максимум
 — локальный минимум
Этап 15