Математический анализ Примеры

Найти локальный максимум и минимум f(x)=2xy
Этап 1
Найдем первую производную функции.
Нажмите для увеличения количества этапов...
Этап 1.1
Поскольку является константой относительно , производная по равна .
Этап 1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3
Умножим на .
Этап 2
Поскольку является константой относительно , производная относительно равна .
Этап 3
Чтобы найти локальные максимумы и минимумы функции, приравняем производную к и решим полученное уравнение.
Этап 4
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 4.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 4.1.1
Поскольку является константой относительно , производная по равна .
Этап 4.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.1.3
Умножим на .
Этап 4.2
Первая производная по равна .
Этап 5
Приравняем первую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 5.1
Пусть первая производная равна .
Этап 5.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 5.2.1
Разделим каждый член на .
Этап 5.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 5.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.2.2.1.1
Сократим общий множитель.
Этап 5.2.2.1.2
Разделим на .
Этап 5.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 5.2.3.1
Разделим на .
Этап 6
Критические точки, которые необходимо вычислить.
Этап 7
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 8
Так как первая производная не изменила знак, локальные экстремумы отсутствуют.
Нет локальных экстремумов
Этап 9