Математический анализ Примеры

Оценить предел предел (sin(x-pi/4))/(x-pi/4), если x стремится к pi/4
Этап 1
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 1.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 1.2
Объединим и .
Этап 1.3
Объединим числители над общим знаменателем.
Этап 1.4
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 1.5
Объединим и .
Этап 1.6
Объединим числители над общим знаменателем.
Этап 2
Вычислим предел.
Нажмите для увеличения количества этапов...
Этап 2.1
Упростим выражение под знаком предела.
Нажмите для увеличения количества этапов...
Этап 2.1.1
Умножим числитель на величину, обратную знаменателю.
Этап 2.1.2
Объединим и .
Этап 2.2
Вынесем член из-под знака предела, так как он не зависит от .
Этап 3
Применим правило Лопиталя.
Нажмите для увеличения количества этапов...
Этап 3.1
Найдем предел числителя и предел знаменателя.
Нажмите для увеличения количества этапов...
Этап 3.1.1
Возьмем предел числителя и предел знаменателя.
Этап 3.1.2
Найдем предел числителя.
Нажмите для увеличения количества этапов...
Этап 3.1.2.1
Вычислим предел.
Нажмите для увеличения количества этапов...
Этап 3.1.2.1.1
Перенесем предел внутрь тригонометрической функции, поскольку синус является непрерывной функцией.
Этап 3.1.2.1.2
Вынесем член из-под знака предела, так как он не зависит от .
Этап 3.1.2.1.3
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 3.1.2.1.4
Вынесем член из-под знака предела, так как он не зависит от .
Этап 3.1.2.1.5
Найдем предел , который является константой по мере приближения к .
Этап 3.1.2.2
Найдем предел , подставив значение для .
Этап 3.1.2.3
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 3.1.2.3.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.1.2.3.1.1
Сократим общий множитель.
Этап 3.1.2.3.1.2
Перепишем это выражение.
Этап 3.1.2.3.2
Вычтем из .
Этап 3.1.2.3.3
Умножим на .
Этап 3.1.2.3.4
Точное значение : .
Этап 3.1.3
Найдем предел знаменателя.
Нажмите для увеличения количества этапов...
Этап 3.1.3.1
Вычислим предел.
Нажмите для увеличения количества этапов...
Этап 3.1.3.1.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 3.1.3.1.2
Вынесем член из-под знака предела, так как он не зависит от .
Этап 3.1.3.1.3
Найдем предел , который является константой по мере приближения к .
Этап 3.1.3.2
Найдем предел , подставив значение для .
Этап 3.1.3.3
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 3.1.3.3.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.1.3.3.1.1
Сократим общий множитель.
Этап 3.1.3.3.1.2
Перепишем это выражение.
Этап 3.1.3.3.2
Вычтем из .
Этап 3.1.3.3.3
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 3.1.3.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 3.1.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 3.2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 3.3
Найдем производную числителя и знаменателя.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Продифференцируем числитель и знаменатель.
Этап 3.3.2
Перенесем влево от .
Этап 3.3.3
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 3.3.3.1
Чтобы применить цепное правило, зададим как .
Этап 3.3.3.2
Производная по равна .
Этап 3.3.4
Поскольку является константой относительно , производная по равна .
Этап 3.3.5
Объединим и .
Этап 3.3.6
По правилу суммы производная по имеет вид .
Этап 3.3.7
Поскольку является константой относительно , производная по равна .
Этап 3.3.8
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3.9
Умножим на .
Этап 3.3.10
Поскольку является константой относительно , производная относительно равна .
Этап 3.3.11
Добавим и .
Этап 3.3.12
Объединим и .
Этап 3.3.13
Перенесем влево от .
Этап 3.3.14
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.3.14.1
Сократим общий множитель.
Этап 3.3.14.2
Разделим на .
Этап 3.3.15
По правилу суммы производная по имеет вид .
Этап 3.3.16
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 3.3.16.1
Перенесем влево от .
Этап 3.3.16.2
Поскольку является константой относительно , производная по равна .
Этап 3.3.16.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3.16.4
Умножим на .
Этап 3.3.17
Поскольку является константой относительно , производная относительно равна .
Этап 3.3.18
Добавим и .
Этап 4
Вычислим предел.
Нажмите для увеличения количества этапов...
Этап 4.1
Вынесем член из-под знака предела, так как он не зависит от .
Этап 4.2
Перенесем предел внутрь тригонометрической функции, поскольку косинус является непрерывной функцией.
Этап 4.3
Вынесем член из-под знака предела, так как он не зависит от .
Этап 4.4
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 4.5
Вынесем член из-под знака предела, так как он не зависит от .
Этап 4.6
Найдем предел , который является константой по мере приближения к .
Этап 5
Найдем предел , подставив значение для .
Этап 6
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 6.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.1.1
Сократим общий множитель.
Этап 6.1.2
Перепишем это выражение.
Этап 6.2
Умножим на .
Этап 6.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.3.1
Сократим общий множитель.
Этап 6.3.2
Перепишем это выражение.
Этап 6.4
Вычтем из .
Этап 6.5
Умножим на .
Этап 6.6
Точное значение : .