Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Сократим общий множитель .
Этап 1.1.1
Сократим общий множитель.
Этап 1.1.2
Перепишем это выражение.
Этап 1.2
Сократим общий множитель .
Этап 1.2.1
Сократим общий множитель.
Этап 1.2.2
Перепишем это выражение.
Этап 2
Разобьем предел с помощью правила произведения пределов при стремлении к .
Этап 3
Этап 3.1
Найдем предел числителя и предел знаменателя.
Этап 3.1.1
Возьмем предел числителя и предел знаменателя.
Этап 3.1.2
Найдем предел числителя.
Этап 3.1.2.1
Вычислим предел.
Этап 3.1.2.1.1
Перенесем предел внутрь тригонометрической функции, поскольку синус является непрерывной функцией.
Этап 3.1.2.1.2
Вынесем член из-под знака предела, так как он не зависит от .
Этап 3.1.2.2
Найдем предел , подставив значение для .
Этап 3.1.2.3
Упростим ответ.
Этап 3.1.2.3.1
Умножим на .
Этап 3.1.2.3.2
Точное значение : .
Этап 3.1.3
Найдем предел , подставив значение для .
Этап 3.1.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 3.2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 3.3
Найдем производную числителя и знаменателя.
Этап 3.3.1
Продифференцируем числитель и знаменатель.
Этап 3.3.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 3.3.2.1
Чтобы применить цепное правило, зададим как .
Этап 3.3.2.2
Производная по равна .
Этап 3.3.2.3
Заменим все вхождения на .
Этап 3.3.3
Поскольку является константой относительно , производная по равна .
Этап 3.3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3.5
Умножим на .
Этап 3.3.6
Перенесем влево от .
Этап 3.3.7
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.4
Разделим на .
Этап 4
Этап 4.1
Вынесем член из-под знака предела, так как он не зависит от .
Этап 4.2
Перенесем предел внутрь тригонометрической функции, поскольку косинус является непрерывной функцией.
Этап 4.3
Вынесем член из-под знака предела, так как он не зависит от .
Этап 5
Этап 5.1
Найдем предел числителя и предел знаменателя.
Этап 5.1.1
Возьмем предел числителя и предел знаменателя.
Этап 5.1.2
Найдем предел , подставив значение для .
Этап 5.1.3
Найдем предел знаменателя.
Этап 5.1.3.1
Вычислим предел.
Этап 5.1.3.1.1
Перенесем предел внутрь тригонометрической функции, поскольку синус является непрерывной функцией.
Этап 5.1.3.1.2
Вынесем член из-под знака предела, так как он не зависит от .
Этап 5.1.3.2
Найдем предел , подставив значение для .
Этап 5.1.3.3
Упростим ответ.
Этап 5.1.3.3.1
Умножим на .
Этап 5.1.3.3.2
Точное значение : .
Этап 5.1.3.3.3
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 5.1.3.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 5.1.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 5.2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 5.3
Найдем производную числителя и знаменателя.
Этап 5.3.1
Продифференцируем числитель и знаменатель.
Этап 5.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 5.3.3
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 5.3.3.1
Чтобы применить цепное правило, зададим как .
Этап 5.3.3.2
Производная по равна .
Этап 5.3.3.3
Заменим все вхождения на .
Этап 5.3.4
Поскольку является константой относительно , производная по равна .
Этап 5.3.5
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 5.3.6
Умножим на .
Этап 5.3.7
Перенесем влево от .
Этап 6
Этап 6.1
Вынесем член из-под знака предела, так как он не зависит от .
Этап 6.2
Разобьем предел с помощью правила частного пределов при стремлении к .
Этап 6.3
Найдем предел , который является константой по мере приближения к .
Этап 6.4
Перенесем предел внутрь тригонометрической функции, поскольку косинус является непрерывной функцией.
Этап 6.5
Вынесем член из-под знака предела, так как он не зависит от .
Этап 7
Этап 7.1
Найдем предел , подставив значение для .
Этап 7.2
Найдем предел , подставив значение для .
Этап 8
Этап 8.1
Умножим на .
Этап 8.2
Точное значение : .
Этап 8.3
Умножим на .
Этап 8.4
Объединим и .
Этап 8.5
Переведем в .
Этап 8.6
Умножим на .
Этап 8.7
Точное значение : .
Этап 8.8
Умножим на .
Этап 9
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: