Математический анализ Примеры

Оценить предел предел (((x+h)^3-(9(x+h)))-(x^3-9x))/h, если h стремится к 0
Этап 1
Умножим на .
Этап 2
Применим правило Лопиталя.
Нажмите для увеличения количества этапов...
Этап 2.1
Найдем предел числителя и предел знаменателя.
Нажмите для увеличения количества этапов...
Этап 2.1.1
Возьмем предел числителя и предел знаменателя.
Этап 2.1.2
Найдем значения пределов, подставив значение для всех вхождений .
Нажмите для увеличения количества этапов...
Этап 2.1.2.1
Найдем предел , подставив значение для .
Этап 2.1.2.2
Объединим противоположные члены в .
Нажмите для увеличения количества этапов...
Этап 2.1.2.2.1
Добавим и .
Этап 2.1.2.2.2
Добавим и .
Этап 2.1.2.3
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.1.2.3.1
Применим свойство дистрибутивности.
Этап 2.1.2.3.2
Умножим на .
Этап 2.1.2.4
Объединим противоположные члены в .
Нажмите для увеличения количества этапов...
Этап 2.1.2.4.1
Вычтем из .
Этап 2.1.2.4.2
Добавим и .
Этап 2.1.2.4.3
Добавим и .
Этап 2.1.3
Найдем предел , подставив значение для .
Этап 2.1.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 2.2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 2.3
Найдем производную числителя и знаменателя.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Продифференцируем числитель и знаменатель.
Этап 2.3.2
По правилу суммы производная по имеет вид .
Этап 2.3.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.3.3.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.3.3.1.1
Чтобы применить цепное правило, зададим как .
Этап 2.3.3.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.3.1.3
Заменим все вхождения на .
Этап 2.3.3.2
По правилу суммы производная по имеет вид .
Этап 2.3.3.3
Поскольку является константой относительно , производная относительно равна .
Этап 2.3.3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.3.5
Добавим и .
Этап 2.3.3.6
Умножим на .
Этап 2.3.4
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.3.4.1
Поскольку является константой относительно , производная по равна .
Этап 2.3.4.2
По правилу суммы производная по имеет вид .
Этап 2.3.4.3
Поскольку является константой относительно , производная относительно равна .
Этап 2.3.4.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.4.5
Добавим и .
Этап 2.3.4.6
Умножим на .
Этап 2.3.5
Поскольку является константой относительно , производная относительно равна .
Этап 2.3.6
Добавим и .
Этап 2.3.7
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.4
Разделим на .
Этап 3
Вычислим предел.
Нажмите для увеличения количества этапов...
Этап 3.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 3.2
Вынесем член из-под знака предела, так как он не зависит от .
Этап 3.3
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Этап 3.4
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 3.5
Найдем предел , который является константой по мере приближения к .
Этап 3.6
Найдем предел , который является константой по мере приближения к .
Этап 4
Найдем предел , подставив значение для .
Этап 5
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 5.1
Добавим и .
Этап 5.2
Умножим на .