Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Перепишем в виде .
Этап 1.2
Развернем , вынося из логарифма.
Этап 2
Этап 2.1
Внесем предел под знак экспоненты.
Этап 2.2
Вынесем член из-под знака предела, так как он не зависит от .
Этап 2.3
Разобьем предел с помощью правила произведения пределов при стремлении к .
Этап 2.4
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Этап 2.5
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 2.6
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Этап 2.7
Вынесем член из-под знака предела, так как он не зависит от .
Этап 2.8
Найдем предел , который является константой по мере приближения к .
Этап 2.9
Внесем предел под знак логарифма.
Этап 3
Этап 3.1
Найдем предел , подставив значение для .
Этап 3.2
Найдем предел , подставив значение для .
Этап 3.3
Найдем предел , подставив значение для .
Этап 4
Этап 4.1
Упростим каждый член.
Этап 4.1.1
Возведем в степень .
Этап 4.1.2
Умножим на .
Этап 4.2
Вычтем из .
Этап 4.3
Добавим и .
Этап 4.4
Умножим .
Этап 4.4.1
Перепишем в виде .
Этап 4.4.2
Перемножим экспоненты в .
Этап 4.4.2.1
Применим правило степени и перемножим показатели, .
Этап 4.4.2.2
Умножим .
Этап 4.4.2.2.1
Объединим и .
Этап 4.4.2.2.2
Умножим на .
Этап 4.4.3
Применим правило степени для объединения показателей.
Этап 4.4.4
Запишем в виде дроби с общим знаменателем.
Этап 4.4.5
Объединим числители над общим знаменателем.
Этап 4.4.6
Добавим и .
Этап 5
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: