Введите задачу...
Математический анализ Примеры
Этап 1
Вынесем член из-под знака предела, так как он не зависит от .
Этап 2
Этап 2.1
Найдем предел числителя и предел знаменателя.
Этап 2.1.1
Возьмем предел числителя и предел знаменателя.
Этап 2.1.2
Для многочлена, старший коэффициент которого положителен, предел в бесконечности равен бесконечности.
Этап 2.1.3
Когда логарифм стремится к бесконечности, значение стремится к .
Этап 2.1.4
Деление бесконечности на бесконечность не определено.
Неопределенные
Этап 2.2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 2.3
Найдем производную числителя и знаменателя.
Этап 2.3.1
Продифференцируем числитель и знаменатель.
Этап 2.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.3
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 2.3.3.1
Чтобы применить цепное правило, зададим как .
Этап 2.3.3.2
Производная по равна .
Этап 2.3.3.3
Заменим все вхождения на .
Этап 2.3.4
По правилу суммы производная по имеет вид .
Этап 2.3.5
Поскольку является константой относительно , производная относительно равна .
Этап 2.3.6
Добавим и .
Этап 2.3.7
Поскольку является константой относительно , производная по равна .
Этап 2.3.8
Объединим и .
Этап 2.3.9
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 2.3.10
Объединим и .
Этап 2.3.11
Изменим порядок членов.
Этап 2.4
Умножим числитель на величину, обратную знаменателю.
Этап 2.5
Умножим на .
Этап 3
Вынесем член из-под знака предела, так как он не зависит от .
Этап 4
Этап 4.1
Найдем предел числителя и предел знаменателя.
Этап 4.1.1
Возьмем предел числителя и предел знаменателя.
Этап 4.1.2
Найдем предел числителя.
Этап 4.1.2.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 4.1.2.2
Поскольку функция стремится к , произведение положительной константы и функции стремится к .
Этап 4.1.2.2.1
Рассмотрим предел с исключенной константой, кратной .
Этап 4.1.2.2.2
Поскольку показатель степени стремится к , величина стремится к .
Этап 4.1.2.3
Найдем предел , который является константой по мере приближения к .
Этап 4.1.2.4
Разность или сумма бесконечности и числа равна бесконечности.
Этап 4.1.3
Поскольку показатель степени стремится к , величина стремится к .
Этап 4.1.4
Деление бесконечности на бесконечность не определено.
Неопределенные
Этап 4.2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 4.3
Найдем производную числителя и знаменателя.
Этап 4.3.1
Продифференцируем числитель и знаменатель.
Этап 4.3.2
По правилу суммы производная по имеет вид .
Этап 4.3.3
Найдем значение .
Этап 4.3.3.1
Поскольку является константой относительно , производная по равна .
Этап 4.3.3.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 4.3.4
Поскольку является константой относительно , производная относительно равна .
Этап 4.3.5
Добавим и .
Этап 4.3.6
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 4.4
Сократим общий множитель .
Этап 4.4.1
Сократим общий множитель.
Этап 4.4.2
Разделим на .
Этап 5
Этап 5.1
Найдем предел , который является константой по мере приближения к .
Этап 5.2
Упростим ответ.
Этап 5.2.1
Сократим общий множитель .
Этап 5.2.1.1
Вынесем множитель из .
Этап 5.2.1.2
Сократим общий множитель.
Этап 5.2.1.3
Перепишем это выражение.
Этап 5.2.2
Умножим на .