Математический анализ Примеры

Оценить предел предел ( натуральный логарифм (x)^2)/(e^(1/x)), когда x стремится к 0 справа
Этап 1
Применим правило Лопиталя.
Нажмите для увеличения количества этапов...
Этап 1.1
Найдем предел числителя и предел знаменателя.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Возьмем предел числителя и предел знаменателя.
Этап 1.1.2
Когда стремится к справа, неограниченно убывает.
Этап 1.1.3
Поскольку показатель степени стремится к , величина стремится к .
Этап 1.1.4
Деление бесконечности на бесконечность не определено.
Неопределенные
Этап 1.2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 1.3
Найдем производную числителя и знаменателя.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Продифференцируем числитель и знаменатель.
Этап 1.3.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 1.3.2.1
Чтобы применить цепное правило, зададим как .
Этап 1.3.2.2
Производная по равна .
Этап 1.3.2.3
Заменим все вхождения на .
Этап 1.3.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.4
Объединим и .
Этап 1.3.5
Объединим и .
Этап 1.3.6
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 1.3.6.1
Вынесем множитель из .
Этап 1.3.6.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 1.3.6.2.1
Вынесем множитель из .
Этап 1.3.6.2.2
Сократим общий множитель.
Этап 1.3.6.2.3
Перепишем это выражение.
Этап 1.3.7
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 1.3.7.1
Чтобы применить цепное правило, зададим как .
Этап 1.3.7.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 1.3.7.3
Заменим все вхождения на .
Этап 1.3.8
Перепишем в виде .
Этап 1.3.9
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.10
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.3.10.1
Перепишем выражение, используя правило отрицательных степеней .
Этап 1.3.10.2
Объединим и .
Этап 1.4
Умножим числитель на величину, обратную знаменателю.
Этап 1.5
Умножим на .
Этап 1.6
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 1.6.1
Вынесем множитель из .
Этап 1.6.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 1.6.2.1
Вынесем множитель из .
Этап 1.6.2.2
Сократим общий множитель.
Этап 1.6.2.3
Перепишем это выражение.
Этап 2
Вычислим предел.
Нажмите для увеличения количества этапов...
Этап 2.1
Вынесем член из-под знака предела, так как он не зависит от .
Этап 2.2
Вынесем член из-под знака предела, так как он не зависит от .
Этап 3
Поскольку числитель стремится к вещественному числу, а знаменатель неограничен, дробь стремится к .
Этап 4
Умножим на .