Математический анализ Примеры

Этап 1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 1.1
Чтобы применить цепное правило, зададим как .
Этап 1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3
Заменим все вхождения на .
Этап 2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 3
Объединим и .
Этап 4
Объединим числители над общим знаменателем.
Этап 5
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 5.1
Умножим на .
Этап 5.2
Вычтем из .
Этап 6
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 6.1
Вынесем знак минуса перед дробью.
Этап 6.2
Объединим дроби.
Нажмите для увеличения количества этапов...
Этап 6.2.1
Объединим и .
Этап 6.2.2
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 6.3
По правилу суммы производная по имеет вид .
Этап 6.4
Поскольку является константой относительно , производная относительно равна .
Этап 6.5
Добавим и .
Этап 6.6
Поскольку является константой относительно , производная по равна .
Этап 6.7
Умножим.
Нажмите для увеличения количества этапов...
Этап 6.7.1
Умножим на .
Этап 6.7.2
Умножим на .
Этап 7
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 7.1
Чтобы применить цепное правило, зададим как .
Этап 7.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 7.3
Заменим все вхождения на .
Этап 8
Продифференцируем, используя правило умножения на константу.
Нажмите для увеличения количества этапов...
Этап 8.1
Объединим и .
Этап 8.2
Упростим члены.
Нажмите для увеличения количества этапов...
Этап 8.2.1
Умножим на .
Этап 8.2.2
Сократим общий множитель.
Этап 8.2.3
Перепишем это выражение.
Этап 8.3
Поскольку является константой относительно , производная по равна .
Этап 8.4
Умножим на .
Этап 9
Возведем в степень .
Этап 10
Возведем в степень .
Этап 11
Применим правило степени для объединения показателей.
Этап 12
Добавим и .
Этап 13
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 14
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 14.1
Умножим на .
Этап 14.2
Применим правило умножения к .