Введите задачу...
ΠΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ Π°Π½Π°Π»ΠΈΠ· ΠΡΠΈΠΌΠ΅ΡΡ
ΠΡΠ°ΠΏ 1
ΠΡΠ°ΠΏ 1.1
ΠΡΠΎΠ΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π³Π»Π°ΡΠΈΡ, ΡΡΠΎ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ , Π³Π΄Π΅ ΠΈ .
ΠΡΠ°ΠΏ 1.2
ΠΡΠΎΠ΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΡΠ΅ΠΏΠ½ΠΎΠ΅ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ (ΠΏΡΠ°Π²ΠΈΠ»ΠΎ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ), ΠΊΠΎΡΠΎΡΠΎΠ΅ Π³Π»Π°ΡΠΈΡ, ΡΡΠΎ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ , Π³Π΄Π΅ ΠΈ .
ΠΡΠ°ΠΏ 1.2.1
Π§ΡΠΎΠ±Ρ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΡΡ ΡΠ΅ΠΏΠ½ΠΎΠ΅ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ, Π·Π°Π΄Π°Π΄ΠΈΠΌ ΠΊΠ°ΠΊ .
ΠΡΠ°ΠΏ 1.2.2
ΠΡΠΎΠ΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΠΊΡΠΏΠΎΠ½Π΅Π½ΡΡ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π³Π»Π°ΡΠΈΡ, ΡΡΠΎ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ , Π³Π΄Π΅ =.
ΠΡΠ°ΠΏ 1.2.3
ΠΠ°ΠΌΠ΅Π½ΠΈΠΌ Π²ΡΠ΅ Π²Ρ
ΠΎΠΆΠ΄Π΅Π½ΠΈΡ Π½Π° .
ΠΡΠ°ΠΏ 1.3
ΠΡΠΎΠ΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌ.
ΠΡΠ°ΠΏ 1.3.1
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΊΠΎΠ½ΡΡΠ°Π½ΡΠΎΠΉ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ , ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠΎ ΡΠ°Π²Π½Π° .
ΠΡΠ°ΠΏ 1.3.2
ΠΡΠΎΠ΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π³Π»Π°ΡΠΈΡ, ΡΡΠΎ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ , Π³Π΄Π΅ .
ΠΡΠ°ΠΏ 1.3.3
Π£ΠΏΡΠΎΡΡΠΈΠΌ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅.
ΠΡΠ°ΠΏ 1.3.3.1
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 1.3.3.2
ΠΠ΅ΡΠ΅Π½Π΅ΡΠ΅ΠΌ Π²Π»Π΅Π²ΠΎ ΠΎΡ .
ΠΡΠ°ΠΏ 1.3.4
ΠΡΠΎΠ΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π³Π»Π°ΡΠΈΡ, ΡΡΠΎ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ , Π³Π΄Π΅ .
ΠΡΠ°ΠΏ 1.4
Π£ΠΏΡΠΎΡΡΠΈΠΌ.
ΠΡΠ°ΠΏ 1.4.1
ΠΠ·ΠΌΠ΅Π½ΠΈΠΌ ΠΏΠΎΡΡΠ΄ΠΎΠΊ ΡΠ»Π΅Π½ΠΎΠ².
ΠΡΠ°ΠΏ 1.4.2
ΠΠ·ΠΌΠ΅Π½ΠΈΠΌ ΠΏΠΎΡΡΠ΄ΠΎΠΊ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Π΅ΠΉ Π² .
ΠΡΠ°ΠΏ 2
ΠΡΠ°ΠΏ 2.1
ΠΠΎ ΠΏΡΠ°Π²ΠΈΠ»Ρ ΡΡΠΌΠΌΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠΎ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ .
ΠΡΠ°ΠΏ 2.2
ΠΠ°ΠΉΠ΄Π΅ΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ .
ΠΡΠ°ΠΏ 2.2.1
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΊΠΎΠ½ΡΡΠ°Π½ΡΠΎΠΉ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ , ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠΎ ΡΠ°Π²Π½Π° .
ΠΡΠ°ΠΏ 2.2.2
ΠΡΠΎΠ΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π³Π»Π°ΡΠΈΡ, ΡΡΠΎ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ , Π³Π΄Π΅ ΠΈ .
ΠΡΠ°ΠΏ 2.2.3
ΠΡΠΎΠ΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΡΠ΅ΠΏΠ½ΠΎΠ΅ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ (ΠΏΡΠ°Π²ΠΈΠ»ΠΎ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ), ΠΊΠΎΡΠΎΡΠΎΠ΅ Π³Π»Π°ΡΠΈΡ, ΡΡΠΎ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ , Π³Π΄Π΅ ΠΈ .
ΠΡΠ°ΠΏ 2.2.3.1
Π§ΡΠΎΠ±Ρ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΡΡ ΡΠ΅ΠΏΠ½ΠΎΠ΅ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ, Π·Π°Π΄Π°Π΄ΠΈΠΌ ΠΊΠ°ΠΊ .
ΠΡΠ°ΠΏ 2.2.3.2
ΠΡΠΎΠ΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΠΊΡΠΏΠΎΠ½Π΅Π½ΡΡ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π³Π»Π°ΡΠΈΡ, ΡΡΠΎ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ , Π³Π΄Π΅ =.
ΠΡΠ°ΠΏ 2.2.3.3
ΠΠ°ΠΌΠ΅Π½ΠΈΠΌ Π²ΡΠ΅ Π²Ρ
ΠΎΠΆΠ΄Π΅Π½ΠΈΡ Π½Π° .
ΠΡΠ°ΠΏ 2.2.4
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΊΠΎΠ½ΡΡΠ°Π½ΡΠΎΠΉ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ , ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠΎ ΡΠ°Π²Π½Π° .
ΠΡΠ°ΠΏ 2.2.5
ΠΡΠΎΠ΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π³Π»Π°ΡΠΈΡ, ΡΡΠΎ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ , Π³Π΄Π΅ .
ΠΡΠ°ΠΏ 2.2.6
ΠΡΠΎΠ΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π³Π»Π°ΡΠΈΡ, ΡΡΠΎ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ , Π³Π΄Π΅ .
ΠΡΠ°ΠΏ 2.2.7
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 2.2.8
ΠΠ΅ΡΠ΅Π½Π΅ΡΠ΅ΠΌ Π²Π»Π΅Π²ΠΎ ΠΎΡ .
ΠΡΠ°ΠΏ 2.3
ΠΠ°ΠΉΠ΄Π΅ΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ .
ΠΡΠ°ΠΏ 2.3.1
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΊΠΎΠ½ΡΡΠ°Π½ΡΠΎΠΉ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ , ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠΎ ΡΠ°Π²Π½Π° .
ΠΡΠ°ΠΏ 2.3.2
ΠΡΠΎΠ΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π³Π»Π°ΡΠΈΡ, ΡΡΠΎ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ , Π³Π΄Π΅ ΠΈ .
ΠΡΠ°ΠΏ 2.3.3
ΠΡΠΎΠ΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΡΠ΅ΠΏΠ½ΠΎΠ΅ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ (ΠΏΡΠ°Π²ΠΈΠ»ΠΎ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ), ΠΊΠΎΡΠΎΡΠΎΠ΅ Π³Π»Π°ΡΠΈΡ, ΡΡΠΎ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ , Π³Π΄Π΅ ΠΈ .
ΠΡΠ°ΠΏ 2.3.3.1
Π§ΡΠΎΠ±Ρ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΡΡ ΡΠ΅ΠΏΠ½ΠΎΠ΅ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ, Π·Π°Π΄Π°Π΄ΠΈΠΌ ΠΊΠ°ΠΊ .
ΠΡΠ°ΠΏ 2.3.3.2
ΠΡΠΎΠ΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΠΊΡΠΏΠΎΠ½Π΅Π½ΡΡ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π³Π»Π°ΡΠΈΡ, ΡΡΠΎ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ , Π³Π΄Π΅ =.
ΠΡΠ°ΠΏ 2.3.3.3
ΠΠ°ΠΌΠ΅Π½ΠΈΠΌ Π²ΡΠ΅ Π²Ρ
ΠΎΠΆΠ΄Π΅Π½ΠΈΡ Π½Π° .
ΠΡΠ°ΠΏ 2.3.4
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΊΠΎΠ½ΡΡΠ°Π½ΡΠΎΠΉ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ , ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠΎ ΡΠ°Π²Π½Π° .
ΠΡΠ°ΠΏ 2.3.5
ΠΡΠΎΠ΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π³Π»Π°ΡΠΈΡ, ΡΡΠΎ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ , Π³Π΄Π΅ .
ΠΡΠ°ΠΏ 2.3.6
ΠΡΠΎΠ΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π³Π»Π°ΡΠΈΡ, ΡΡΠΎ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ , Π³Π΄Π΅ .
ΠΡΠ°ΠΏ 2.3.7
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 2.3.8
ΠΠ΅ΡΠ΅Π½Π΅ΡΠ΅ΠΌ Π²Π»Π΅Π²ΠΎ ΠΎΡ .
ΠΡΠ°ΠΏ 2.3.9
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 2.4
Π£ΠΏΡΠΎΡΡΠΈΠΌ.
ΠΡΠ°ΠΏ 2.4.1
ΠΡΠΈΠΌΠ΅Π½ΠΈΠΌ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ Π΄ΠΈΡΡΡΠΈΠ±ΡΡΠΈΠ²Π½ΠΎΡΡΠΈ.
ΠΡΠ°ΠΏ 2.4.2
ΠΡΠΈΠΌΠ΅Π½ΠΈΠΌ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ Π΄ΠΈΡΡΡΠΈΠ±ΡΡΠΈΠ²Π½ΠΎΡΡΠΈ.
ΠΡΠ°ΠΏ 2.4.3
ΠΠ±ΡΠ΅Π΄ΠΈΠ½ΠΈΠΌ ΡΠ΅ΡΠΌΠΈΠ½Ρ.
ΠΡΠ°ΠΏ 2.4.3.1
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 2.4.3.2
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 2.4.3.3
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 2.4.3.4
ΠΠΎΠ±Π°Π²ΠΈΠΌ ΠΈ .
ΠΡΠ°ΠΏ 2.4.3.4.1
ΠΠ΅ΡΠ΅Π½Π΅ΡΠ΅ΠΌ .
ΠΡΠ°ΠΏ 2.4.3.4.2
ΠΠΎΠ±Π°Π²ΠΈΠΌ ΠΈ .
ΠΡΠ°ΠΏ 2.4.4
ΠΠ·ΠΌΠ΅Π½ΠΈΠΌ ΠΏΠΎΡΡΠ΄ΠΎΠΊ ΡΠ»Π΅Π½ΠΎΠ².
ΠΡΠ°ΠΏ 2.4.5
ΠΠ·ΠΌΠ΅Π½ΠΈΠΌ ΠΏΠΎΡΡΠ΄ΠΎΠΊ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Π΅ΠΉ Π² .
ΠΡΠ°ΠΏ 3
ΠΡΠ°ΠΏ 3.1
ΠΠΎ ΠΏΡΠ°Π²ΠΈΠ»Ρ ΡΡΠΌΠΌΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠΎ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ .
ΠΡΠ°ΠΏ 3.2
ΠΠ°ΠΉΠ΄Π΅ΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ .
ΠΡΠ°ΠΏ 3.2.1
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΊΠΎΠ½ΡΡΠ°Π½ΡΠΎΠΉ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ , ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠΎ ΡΠ°Π²Π½Π° .
ΠΡΠ°ΠΏ 3.2.2
ΠΡΠΎΠ΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π³Π»Π°ΡΠΈΡ, ΡΡΠΎ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ , Π³Π΄Π΅ ΠΈ .
ΠΡΠ°ΠΏ 3.2.3
ΠΡΠΎΠ΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΡΠ΅ΠΏΠ½ΠΎΠ΅ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ (ΠΏΡΠ°Π²ΠΈΠ»ΠΎ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ), ΠΊΠΎΡΠΎΡΠΎΠ΅ Π³Π»Π°ΡΠΈΡ, ΡΡΠΎ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ , Π³Π΄Π΅ ΠΈ .
ΠΡΠ°ΠΏ 3.2.3.1
Π§ΡΠΎΠ±Ρ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΡΡ ΡΠ΅ΠΏΠ½ΠΎΠ΅ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ, Π·Π°Π΄Π°Π΄ΠΈΠΌ ΠΊΠ°ΠΊ .
ΠΡΠ°ΠΏ 3.2.3.2
ΠΡΠΎΠ΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΠΊΡΠΏΠΎΠ½Π΅Π½ΡΡ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π³Π»Π°ΡΠΈΡ, ΡΡΠΎ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ , Π³Π΄Π΅ =.
ΠΡΠ°ΠΏ 3.2.3.3
ΠΠ°ΠΌΠ΅Π½ΠΈΠΌ Π²ΡΠ΅ Π²Ρ
ΠΎΠΆΠ΄Π΅Π½ΠΈΡ Π½Π° .
ΠΡΠ°ΠΏ 3.2.4
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΊΠΎΠ½ΡΡΠ°Π½ΡΠΎΠΉ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ , ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠΎ ΡΠ°Π²Π½Π° .
ΠΡΠ°ΠΏ 3.2.5
ΠΡΠΎΠ΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π³Π»Π°ΡΠΈΡ, ΡΡΠΎ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ , Π³Π΄Π΅ .
ΠΡΠ°ΠΏ 3.2.6
ΠΡΠΎΠ΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π³Π»Π°ΡΠΈΡ, ΡΡΠΎ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ , Π³Π΄Π΅ .
ΠΡΠ°ΠΏ 3.2.7
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 3.2.8
ΠΠ΅ΡΠ΅Π½Π΅ΡΠ΅ΠΌ Π²Π»Π΅Π²ΠΎ ΠΎΡ .
ΠΡΠ°ΠΏ 3.3
ΠΠ°ΠΉΠ΄Π΅ΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ .
ΠΡΠ°ΠΏ 3.3.1
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΊΠΎΠ½ΡΡΠ°Π½ΡΠΎΠΉ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ , ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠΎ ΡΠ°Π²Π½Π° .
ΠΡΠ°ΠΏ 3.3.2
ΠΡΠΎΠ΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π³Π»Π°ΡΠΈΡ, ΡΡΠΎ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ , Π³Π΄Π΅ ΠΈ .
ΠΡΠ°ΠΏ 3.3.3
ΠΡΠΎΠ΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΡΠ΅ΠΏΠ½ΠΎΠ΅ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ (ΠΏΡΠ°Π²ΠΈΠ»ΠΎ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ), ΠΊΠΎΡΠΎΡΠΎΠ΅ Π³Π»Π°ΡΠΈΡ, ΡΡΠΎ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ , Π³Π΄Π΅ ΠΈ .
ΠΡΠ°ΠΏ 3.3.3.1
Π§ΡΠΎΠ±Ρ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΡΡ ΡΠ΅ΠΏΠ½ΠΎΠ΅ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ, Π·Π°Π΄Π°Π΄ΠΈΠΌ ΠΊΠ°ΠΊ .
ΠΡΠ°ΠΏ 3.3.3.2
ΠΡΠΎΠ΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΠΊΡΠΏΠΎΠ½Π΅Π½ΡΡ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π³Π»Π°ΡΠΈΡ, ΡΡΠΎ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ , Π³Π΄Π΅ =.
ΠΡΠ°ΠΏ 3.3.3.3
ΠΠ°ΠΌΠ΅Π½ΠΈΠΌ Π²ΡΠ΅ Π²Ρ
ΠΎΠΆΠ΄Π΅Π½ΠΈΡ Π½Π° .
ΠΡΠ°ΠΏ 3.3.4
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΊΠΎΠ½ΡΡΠ°Π½ΡΠΎΠΉ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ , ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠΎ ΡΠ°Π²Π½Π° .
ΠΡΠ°ΠΏ 3.3.5
ΠΡΠΎΠ΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π³Π»Π°ΡΠΈΡ, ΡΡΠΎ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ , Π³Π΄Π΅ .
ΠΡΠ°ΠΏ 3.3.6
ΠΡΠΎΠ΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π³Π»Π°ΡΠΈΡ, ΡΡΠΎ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ , Π³Π΄Π΅ .
ΠΡΠ°ΠΏ 3.3.7
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 3.3.8
ΠΠ΅ΡΠ΅Π½Π΅ΡΠ΅ΠΌ Π²Π»Π΅Π²ΠΎ ΠΎΡ .
ΠΡΠ°ΠΏ 3.3.9
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 3.4
ΠΠ°ΠΉΠ΄Π΅ΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ .
ΠΡΠ°ΠΏ 3.4.1
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΊΠΎΠ½ΡΡΠ°Π½ΡΠΎΠΉ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ , ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠΎ ΡΠ°Π²Π½Π° .
ΠΡΠ°ΠΏ 3.4.2
ΠΡΠΎΠ΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΡΠ΅ΠΏΠ½ΠΎΠ΅ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ (ΠΏΡΠ°Π²ΠΈΠ»ΠΎ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ), ΠΊΠΎΡΠΎΡΠΎΠ΅ Π³Π»Π°ΡΠΈΡ, ΡΡΠΎ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ , Π³Π΄Π΅ ΠΈ .
ΠΡΠ°ΠΏ 3.4.2.1
Π§ΡΠΎΠ±Ρ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΡΡ ΡΠ΅ΠΏΠ½ΠΎΠ΅ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ, Π·Π°Π΄Π°Π΄ΠΈΠΌ ΠΊΠ°ΠΊ .
ΠΡΠ°ΠΏ 3.4.2.2
ΠΡΠΎΠ΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΠΊΡΠΏΠΎΠ½Π΅Π½ΡΡ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π³Π»Π°ΡΠΈΡ, ΡΡΠΎ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ , Π³Π΄Π΅ =.
ΠΡΠ°ΠΏ 3.4.2.3
ΠΠ°ΠΌΠ΅Π½ΠΈΠΌ Π²ΡΠ΅ Π²Ρ
ΠΎΠΆΠ΄Π΅Π½ΠΈΡ Π½Π° .
ΠΡΠ°ΠΏ 3.4.3
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΊΠΎΠ½ΡΡΠ°Π½ΡΠΎΠΉ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ , ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠΎ ΡΠ°Π²Π½Π° .
ΠΡΠ°ΠΏ 3.4.4
ΠΡΠΎΠ΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π³Π»Π°ΡΠΈΡ, ΡΡΠΎ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ , Π³Π΄Π΅ .
ΠΡΠ°ΠΏ 3.4.5
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 3.4.6
ΠΠ΅ΡΠ΅Π½Π΅ΡΠ΅ΠΌ Π²Π»Π΅Π²ΠΎ ΠΎΡ .
ΠΡΠ°ΠΏ 3.4.7
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 3.5
Π£ΠΏΡΠΎΡΡΠΈΠΌ.
ΠΡΠ°ΠΏ 3.5.1
ΠΡΠΈΠΌΠ΅Π½ΠΈΠΌ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ Π΄ΠΈΡΡΡΠΈΠ±ΡΡΠΈΠ²Π½ΠΎΡΡΠΈ.
ΠΡΠ°ΠΏ 3.5.2
ΠΡΠΈΠΌΠ΅Π½ΠΈΠΌ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ Π΄ΠΈΡΡΡΠΈΠ±ΡΡΠΈΠ²Π½ΠΎΡΡΠΈ.
ΠΡΠ°ΠΏ 3.5.3
ΠΠ±ΡΠ΅Π΄ΠΈΠ½ΠΈΠΌ ΡΠ΅ΡΠΌΠΈΠ½Ρ.
ΠΡΠ°ΠΏ 3.5.3.1
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 3.5.3.2
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 3.5.3.3
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 3.5.3.4
ΠΠΎΠ±Π°Π²ΠΈΠΌ ΠΈ .
ΠΡΠ°ΠΏ 3.5.3.4.1
ΠΠ΅ΡΠ΅Π½Π΅ΡΠ΅ΠΌ .
ΠΡΠ°ΠΏ 3.5.3.4.2
ΠΠΎΠ±Π°Π²ΠΈΠΌ ΠΈ .
ΠΡΠ°ΠΏ 3.5.3.5
ΠΠΎΠ±Π°Π²ΠΈΠΌ ΠΈ .
ΠΡΠ°ΠΏ 3.5.4
ΠΠ·ΠΌΠ΅Π½ΠΈΠΌ ΠΏΠΎΡΡΠ΄ΠΎΠΊ ΡΠ»Π΅Π½ΠΎΠ².
ΠΡΠ°ΠΏ 3.5.5
ΠΠ·ΠΌΠ΅Π½ΠΈΠΌ ΠΏΠΎΡΡΠ΄ΠΎΠΊ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Π΅ΠΉ Π² .
ΠΡΠ°ΠΏ 4
ΠΡΠ°ΠΏ 4.1
ΠΠΎ ΠΏΡΠ°Π²ΠΈΠ»Ρ ΡΡΠΌΠΌΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠΎ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ .
ΠΡΠ°ΠΏ 4.2
ΠΠ°ΠΉΠ΄Π΅ΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ .
ΠΡΠ°ΠΏ 4.2.1
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΊΠΎΠ½ΡΡΠ°Π½ΡΠΎΠΉ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ , ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠΎ ΡΠ°Π²Π½Π° .
ΠΡΠ°ΠΏ 4.2.2
ΠΡΠΎΠ΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π³Π»Π°ΡΠΈΡ, ΡΡΠΎ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ , Π³Π΄Π΅ ΠΈ .
ΠΡΠ°ΠΏ 4.2.3
ΠΡΠΎΠ΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΡΠ΅ΠΏΠ½ΠΎΠ΅ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ (ΠΏΡΠ°Π²ΠΈΠ»ΠΎ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ), ΠΊΠΎΡΠΎΡΠΎΠ΅ Π³Π»Π°ΡΠΈΡ, ΡΡΠΎ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ , Π³Π΄Π΅ ΠΈ .
ΠΡΠ°ΠΏ 4.2.3.1
Π§ΡΠΎΠ±Ρ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΡΡ ΡΠ΅ΠΏΠ½ΠΎΠ΅ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ, Π·Π°Π΄Π°Π΄ΠΈΠΌ ΠΊΠ°ΠΊ .
ΠΡΠ°ΠΏ 4.2.3.2
ΠΡΠΎΠ΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΠΊΡΠΏΠΎΠ½Π΅Π½ΡΡ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π³Π»Π°ΡΠΈΡ, ΡΡΠΎ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ , Π³Π΄Π΅ =.
ΠΡΠ°ΠΏ 4.2.3.3
ΠΠ°ΠΌΠ΅Π½ΠΈΠΌ Π²ΡΠ΅ Π²Ρ
ΠΎΠΆΠ΄Π΅Π½ΠΈΡ Π½Π° .
ΠΡΠ°ΠΏ 4.2.4
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΊΠΎΠ½ΡΡΠ°Π½ΡΠΎΠΉ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ , ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠΎ ΡΠ°Π²Π½Π° .
ΠΡΠ°ΠΏ 4.2.5
ΠΡΠΎΠ΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π³Π»Π°ΡΠΈΡ, ΡΡΠΎ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ , Π³Π΄Π΅ .
ΠΡΠ°ΠΏ 4.2.6
ΠΡΠΎΠ΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π³Π»Π°ΡΠΈΡ, ΡΡΠΎ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ , Π³Π΄Π΅ .
ΠΡΠ°ΠΏ 4.2.7
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 4.2.8
ΠΠ΅ΡΠ΅Π½Π΅ΡΠ΅ΠΌ Π²Π»Π΅Π²ΠΎ ΠΎΡ .
ΠΡΠ°ΠΏ 4.3
ΠΠ°ΠΉΠ΄Π΅ΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ .
ΠΡΠ°ΠΏ 4.3.1
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΊΠΎΠ½ΡΡΠ°Π½ΡΠΎΠΉ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ , ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠΎ ΡΠ°Π²Π½Π° .
ΠΡΠ°ΠΏ 4.3.2
ΠΡΠΎΠ΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π³Π»Π°ΡΠΈΡ, ΡΡΠΎ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ , Π³Π΄Π΅ ΠΈ .
ΠΡΠ°ΠΏ 4.3.3
ΠΡΠΎΠ΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΡΠ΅ΠΏΠ½ΠΎΠ΅ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ (ΠΏΡΠ°Π²ΠΈΠ»ΠΎ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ), ΠΊΠΎΡΠΎΡΠΎΠ΅ Π³Π»Π°ΡΠΈΡ, ΡΡΠΎ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ , Π³Π΄Π΅ ΠΈ .
ΠΡΠ°ΠΏ 4.3.3.1
Π§ΡΠΎΠ±Ρ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΡΡ ΡΠ΅ΠΏΠ½ΠΎΠ΅ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ, Π·Π°Π΄Π°Π΄ΠΈΠΌ ΠΊΠ°ΠΊ .
ΠΡΠ°ΠΏ 4.3.3.2
ΠΡΠΎΠ΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΠΊΡΠΏΠΎΠ½Π΅Π½ΡΡ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π³Π»Π°ΡΠΈΡ, ΡΡΠΎ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ , Π³Π΄Π΅ =.
ΠΡΠ°ΠΏ 4.3.3.3
ΠΠ°ΠΌΠ΅Π½ΠΈΠΌ Π²ΡΠ΅ Π²Ρ
ΠΎΠΆΠ΄Π΅Π½ΠΈΡ Π½Π° .
ΠΡΠ°ΠΏ 4.3.4
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΊΠΎΠ½ΡΡΠ°Π½ΡΠΎΠΉ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ , ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠΎ ΡΠ°Π²Π½Π° .
ΠΡΠ°ΠΏ 4.3.5
ΠΡΠΎΠ΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π³Π»Π°ΡΠΈΡ, ΡΡΠΎ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ , Π³Π΄Π΅ .
ΠΡΠ°ΠΏ 4.3.6
ΠΡΠΎΠ΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π³Π»Π°ΡΠΈΡ, ΡΡΠΎ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ , Π³Π΄Π΅ .
ΠΡΠ°ΠΏ 4.3.7
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 4.3.8
ΠΠ΅ΡΠ΅Π½Π΅ΡΠ΅ΠΌ Π²Π»Π΅Π²ΠΎ ΠΎΡ .
ΠΡΠ°ΠΏ 4.3.9
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 4.4
ΠΠ°ΠΉΠ΄Π΅ΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ .
ΠΡΠ°ΠΏ 4.4.1
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΊΠΎΠ½ΡΡΠ°Π½ΡΠΎΠΉ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ , ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠΎ ΡΠ°Π²Π½Π° .
ΠΡΠ°ΠΏ 4.4.2
ΠΡΠΎΠ΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΡΠ΅ΠΏΠ½ΠΎΠ΅ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ (ΠΏΡΠ°Π²ΠΈΠ»ΠΎ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ), ΠΊΠΎΡΠΎΡΠΎΠ΅ Π³Π»Π°ΡΠΈΡ, ΡΡΠΎ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ , Π³Π΄Π΅ ΠΈ .
ΠΡΠ°ΠΏ 4.4.2.1
Π§ΡΠΎΠ±Ρ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΡΡ ΡΠ΅ΠΏΠ½ΠΎΠ΅ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ, Π·Π°Π΄Π°Π΄ΠΈΠΌ ΠΊΠ°ΠΊ .
ΠΡΠ°ΠΏ 4.4.2.2
ΠΡΠΎΠ΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΠΊΡΠΏΠΎΠ½Π΅Π½ΡΡ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π³Π»Π°ΡΠΈΡ, ΡΡΠΎ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ , Π³Π΄Π΅ =.
ΠΡΠ°ΠΏ 4.4.2.3
ΠΠ°ΠΌΠ΅Π½ΠΈΠΌ Π²ΡΠ΅ Π²Ρ
ΠΎΠΆΠ΄Π΅Π½ΠΈΡ Π½Π° .
ΠΡΠ°ΠΏ 4.4.3
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΊΠΎΠ½ΡΡΠ°Π½ΡΠΎΠΉ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ , ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠΎ ΡΠ°Π²Π½Π° .
ΠΡΠ°ΠΏ 4.4.4
ΠΡΠΎΠ΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π³Π»Π°ΡΠΈΡ, ΡΡΠΎ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ , Π³Π΄Π΅ .
ΠΡΠ°ΠΏ 4.4.5
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 4.4.6
ΠΠ΅ΡΠ΅Π½Π΅ΡΠ΅ΠΌ Π²Π»Π΅Π²ΠΎ ΠΎΡ .
ΠΡΠ°ΠΏ 4.4.7
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 4.5
Π£ΠΏΡΠΎΡΡΠΈΠΌ.
ΠΡΠ°ΠΏ 4.5.1
ΠΡΠΈΠΌΠ΅Π½ΠΈΠΌ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ Π΄ΠΈΡΡΡΠΈΠ±ΡΡΠΈΠ²Π½ΠΎΡΡΠΈ.
ΠΡΠ°ΠΏ 4.5.2
ΠΡΠΈΠΌΠ΅Π½ΠΈΠΌ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ Π΄ΠΈΡΡΡΠΈΠ±ΡΡΠΈΠ²Π½ΠΎΡΡΠΈ.
ΠΡΠ°ΠΏ 4.5.3
ΠΠ±ΡΠ΅Π΄ΠΈΠ½ΠΈΠΌ ΡΠ΅ΡΠΌΠΈΠ½Ρ.
ΠΡΠ°ΠΏ 4.5.3.1
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 4.5.3.2
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 4.5.3.3
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 4.5.3.4
ΠΠΎΠ±Π°Π²ΠΈΠΌ ΠΈ .
ΠΡΠ°ΠΏ 4.5.3.4.1
ΠΠ΅ΡΠ΅Π½Π΅ΡΠ΅ΠΌ .
ΠΡΠ°ΠΏ 4.5.3.4.2
ΠΠΎΠ±Π°Π²ΠΈΠΌ ΠΈ .
ΠΡΠ°ΠΏ 4.5.3.5
ΠΠΎΠ±Π°Π²ΠΈΠΌ ΠΈ .
ΠΡΠ°ΠΏ 4.5.4
ΠΠ·ΠΌΠ΅Π½ΠΈΠΌ ΠΏΠΎΡΡΠ΄ΠΎΠΊ ΡΠ»Π΅Π½ΠΎΠ².
ΠΡΠ°ΠΏ 4.5.5
ΠΠ·ΠΌΠ΅Π½ΠΈΠΌ ΠΏΠΎΡΡΠ΄ΠΎΠΊ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Π΅ΠΉ Π² .