Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Возьмем предел числителя и предел знаменателя.
Этап 1.2
Найдем предел числителя.
Этап 1.2.1
Разобьем предел с помощью правила произведения пределов при стремлении к .
Этап 1.2.2
Перенесем предел внутрь тригонометрической функции, поскольку косинус является непрерывной функцией.
Этап 1.2.3
Вынесем член из-под знака предела, так как он не зависит от .
Этап 1.2.4
Найдем значения пределов, подставив значение для всех вхождений .
Этап 1.2.4.1
Найдем предел , подставив значение для .
Этап 1.2.4.2
Найдем предел , подставив значение для .
Этап 1.2.5
Упростим ответ.
Этап 1.2.5.1
Умножим на .
Этап 1.2.5.2
Точное значение : .
Этап 1.2.5.3
Умножим на .
Этап 1.3
Найдем предел знаменателя.
Этап 1.3.1
Вычислим предел.
Этап 1.3.1.1
Перенесем предел внутрь тригонометрической функции, поскольку синус является непрерывной функцией.
Этап 1.3.1.2
Вынесем член из-под знака предела, так как он не зависит от .
Этап 1.3.2
Найдем предел , подставив значение для .
Этап 1.3.3
Упростим ответ.
Этап 1.3.3.1
Умножим на .
Этап 1.3.3.2
Точное значение : .
Этап 1.3.3.3
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.3.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 3
Этап 3.1
Продифференцируем числитель и знаменатель.
Этап 3.2
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 3.3
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 3.3.1
Чтобы применить цепное правило, зададим как .
Этап 3.3.2
Производная по равна .
Этап 3.3.3
Заменим все вхождения на .
Этап 3.4
Поскольку является константой относительно , производная по равна .
Этап 3.5
Умножим на .
Этап 3.6
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.7
Умножим на .
Этап 3.8
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.9
Умножим на .
Этап 3.10
Изменим порядок членов.
Этап 3.11
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 3.11.1
Чтобы применить цепное правило, зададим как .
Этап 3.11.2
Производная по равна .
Этап 3.11.3
Заменим все вхождения на .
Этап 3.12
Поскольку является константой относительно , производная по равна .
Этап 3.13
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.14
Умножим на .
Этап 3.15
Перенесем влево от .
Этап 3.16
Умножим на .
Этап 4
Вынесем член из-под знака предела, так как он не зависит от .
Этап 5
Разобьем предел с помощью правила частного пределов при стремлении к .
Этап 6
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 7
Вынесем член из-под знака предела, так как он не зависит от .
Этап 8
Разобьем предел с помощью правила произведения пределов при стремлении к .
Этап 9
Перенесем предел внутрь тригонометрической функции, поскольку синус является непрерывной функцией.
Этап 10
Вынесем член из-под знака предела, так как он не зависит от .
Этап 11
Перенесем предел внутрь тригонометрической функции, поскольку косинус является непрерывной функцией.
Этап 12
Вынесем член из-под знака предела, так как он не зависит от .
Этап 13
Перенесем предел внутрь тригонометрической функции, поскольку косинус является непрерывной функцией.
Этап 14
Вынесем член из-под знака предела, так как он не зависит от .
Этап 15
Этап 15.1
Найдем предел , подставив значение для .
Этап 15.2
Найдем предел , подставив значение для .
Этап 15.3
Найдем предел , подставив значение для .
Этап 15.4
Найдем предел , подставив значение для .
Этап 16
Этап 16.1
Упростим числитель.
Этап 16.1.1
Умножим на .
Этап 16.1.2
Умножим на .
Этап 16.1.3
Точное значение : .
Этап 16.1.4
Умножим на .
Этап 16.1.5
Умножим на .
Этап 16.1.6
Точное значение : .
Этап 16.1.7
Добавим и .
Этап 16.2
Упростим знаменатель.
Этап 16.2.1
Умножим на .
Этап 16.2.2
Точное значение : .
Этап 16.3
Сократим общий множитель .
Этап 16.3.1
Сократим общий множитель.
Этап 16.3.2
Перепишем это выражение.
Этап 16.4
Умножим на .