Математический анализ Примеры

Вычислить при помощи правила Лопиталя предел (9^x-5^x)/x, если x стремится к 0
Этап 1
Найдем предел числителя и предел знаменателя.
Нажмите для увеличения количества этапов...
Этап 1.1
Возьмем предел числителя и предел знаменателя.
Этап 1.2
Найдем предел числителя.
Нажмите для увеличения количества этапов...
Этап 1.2.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 1.2.2
Внесем предел под знак экспоненты.
Этап 1.2.3
Внесем предел под знак экспоненты.
Этап 1.2.4
Найдем значения пределов, подставив значение для всех вхождений .
Нажмите для увеличения количества этапов...
Этап 1.2.4.1
Найдем предел , подставив значение для .
Этап 1.2.4.2
Найдем предел , подставив значение для .
Этап 1.2.5
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 1.2.5.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.2.5.1.1
Любое число в степени равно .
Этап 1.2.5.1.2
Любое число в степени равно .
Этап 1.2.5.1.3
Умножим на .
Этап 1.2.5.2
Вычтем из .
Этап 1.3
Найдем предел , подставив значение для .
Этап 1.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 3
Найдем производную числителя и знаменателя.
Нажмите для увеличения количества этапов...
Этап 3.1
Продифференцируем числитель и знаменатель.
Этап 3.2
По правилу суммы производная по имеет вид .
Этап 3.3
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 3.4
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 3.4.1
Поскольку является константой относительно , производная по равна .
Этап 3.4.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 3.4.3
Избавимся от скобок.
Этап 3.5
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4
Разделим на .
Этап 5
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 6
Вынесем член из-под знака предела, так как он не зависит от .
Этап 7
Внесем предел под знак экспоненты.
Этап 8
Вынесем член из-под знака предела, так как он не зависит от .
Этап 9
Внесем предел под знак экспоненты.
Этап 10
Найдем значения пределов, подставив значение для всех вхождений .
Нажмите для увеличения количества этапов...
Этап 10.1
Найдем предел , подставив значение для .
Этап 10.2
Найдем предел , подставив значение для .
Этап 11
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 11.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 11.1.1
Любое число в степени равно .
Этап 11.1.2
Умножим на .
Этап 11.1.3
Любое число в степени равно .
Этап 11.1.4
Умножим на .
Этап 11.2
Используем формулу разности логарифмов с одинаковым основанием: .