Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Возьмем предел числителя и предел знаменателя.
Этап 1.2
Найдем предел числителя.
Этап 1.2.1
Вычислим предел.
Этап 1.2.1.1
Перенесем предел внутрь тригонометрической функции, поскольку синус является непрерывной функцией.
Этап 1.2.1.2
Вынесем член из-под знака предела, так как он не зависит от .
Этап 1.2.2
Найдем предел , подставив значение для .
Этап 1.2.3
Упростим ответ.
Этап 1.2.3.1
Умножим на .
Этап 1.2.3.2
Точное значение : .
Этап 1.3
Найдем предел знаменателя.
Этап 1.3.1
Вычислим предел.
Этап 1.3.1.1
Перенесем предел внутрь тригонометрической функции, поскольку тангенс — непрерывная функция.
Этап 1.3.1.2
Вынесем член из-под знака предела, так как он не зависит от .
Этап 1.3.2
Найдем предел , подставив значение для .
Этап 1.3.3
Упростим ответ.
Этап 1.3.3.1
Умножим на .
Этап 1.3.3.2
Точное значение : .
Этап 1.3.3.3
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.3.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 3
Этап 3.1
Продифференцируем числитель и знаменатель.
Этап 3.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 3.2.1
Чтобы применить цепное правило, зададим как .
Этап 3.2.2
Производная по равна .
Этап 3.2.3
Заменим все вхождения на .
Этап 3.3
Поскольку является константой относительно , производная по равна .
Этап 3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.5
Умножим на .
Этап 3.6
Перенесем влево от .
Этап 3.7
Умножим на .
Этап 3.8
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 3.8.1
Чтобы применить цепное правило, зададим как .
Этап 3.8.2
Производная по равна .
Этап 3.8.3
Заменим все вхождения на .
Этап 3.9
Поскольку является константой относительно , производная по равна .
Этап 3.10
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.11
Умножим на .
Этап 3.12
Перенесем влево от .
Этап 3.13
Умножим на .
Этап 4
Этап 4.1
Вынесем множитель из .
Этап 4.2
Сократим общие множители.
Этап 4.2.1
Вынесем множитель из .
Этап 4.2.2
Сократим общий множитель.
Этап 4.2.3
Перепишем это выражение.
Этап 5
Вынесем член из-под знака предела, так как он не зависит от .
Этап 6
Разобьем предел с помощью правила частного пределов при стремлении к .
Этап 7
Перенесем предел внутрь тригонометрической функции, поскольку косинус является непрерывной функцией.
Этап 8
Вынесем член из-под знака предела, так как он не зависит от .
Этап 9
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Этап 10
Перенесем предел внутрь тригонометрической функции, поскольку секанс — непрерывная функция.
Этап 11
Вынесем член из-под знака предела, так как он не зависит от .
Этап 12
Этап 12.1
Найдем предел , подставив значение для .
Этап 12.2
Найдем предел , подставив значение для .
Этап 13
Этап 13.1
Объединим.
Этап 13.2
Вынесем множитель из .
Этап 13.3
Разделим дроби.
Этап 13.4
Выразим через синусы и косинусы.
Этап 13.5
Умножим на обратную дробь, чтобы разделить на .
Этап 13.6
Умножим на .
Этап 13.7
Умножим на .
Этап 13.8
Умножим на .
Этап 13.9
Разделим дроби.
Этап 13.10
Выразим через синусы и косинусы.
Этап 13.11
Умножим на обратную дробь, чтобы разделить на .
Этап 13.12
Умножим на .
Этап 13.13
Умножим на , сложив экспоненты.
Этап 13.13.1
Перенесем .
Этап 13.13.2
Умножим на .
Этап 13.14
Умножим на , сложив экспоненты.
Этап 13.14.1
Перенесем .
Этап 13.14.2
Умножим на .
Этап 13.14.2.1
Возведем в степень .
Этап 13.14.2.2
Применим правило степени для объединения показателей.
Этап 13.14.3
Добавим и .
Этап 13.15
Точное значение : .
Этап 13.16
Единица в любой степени равна единице.
Этап 13.17
Умножим на .