Математический анализ Примеры

Вычислим интеграл интеграл ( квадратный корень из 5x)/5+5/( квадратный корень из 5x) по x
Этап 1
Разделим данный интеграл на несколько интегралов.
Этап 2
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 3
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 3.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 3.1.1
Дифференцируем .
Этап 3.1.2
Поскольку является константой относительно , производная по равна .
Этап 3.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.1.4
Умножим на .
Этап 3.2
Переформулируем задачу с помощью и .
Этап 4
Объединим и .
Этап 5
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 6
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 6.1
Упростим.
Нажмите для увеличения количества этапов...
Этап 6.1.1
Умножим на .
Этап 6.1.2
Умножим на .
Этап 6.2
С помощью запишем в виде .
Этап 7
По правилу степени интеграл по имеет вид .
Этап 8
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 9
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 9.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 9.1.1
Дифференцируем .
Этап 9.1.2
Поскольку является константой относительно , производная по равна .
Этап 9.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 9.1.4
Умножим на .
Этап 9.2
Переформулируем задачу с помощью и .
Этап 10
Упростим.
Нажмите для увеличения количества этапов...
Этап 10.1
Умножим на .
Этап 10.2
Перенесем влево от .
Этап 11
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 12
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 12.1
Упростим.
Нажмите для увеличения количества этапов...
Этап 12.1.1
Объединим и .
Этап 12.1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 12.1.2.1
Сократим общий множитель.
Этап 12.1.2.2
Перепишем это выражение.
Этап 12.1.3
Умножим на .
Этап 12.2
Применим основные правила для показателей степени.
Нажмите для увеличения количества этапов...
Этап 12.2.1
С помощью запишем в виде .
Этап 12.2.2
Вынесем из знаменателя, возведя в степень.
Этап 12.2.3
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 12.2.3.1
Применим правило степени и перемножим показатели, .
Этап 12.2.3.2
Объединим и .
Этап 12.2.3.3
Вынесем знак минуса перед дробью.
Этап 13
По правилу степени интеграл по имеет вид .
Этап 14
Упростим.
Нажмите для увеличения количества этапов...
Этап 14.1
Упростим.
Этап 14.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 14.2.1
Умножим на .
Этап 14.2.2
Умножим на .
Этап 15
Выполним обратную подстановку для каждой подставленной переменной интегрирования.
Нажмите для увеличения количества этапов...
Этап 15.1
Заменим все вхождения на .
Этап 15.2
Заменим все вхождения на .