Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Пусть . Найдем .
Этап 1.1.1
Дифференцируем .
Этап 1.1.2
Поскольку является константой относительно , производная по равна .
Этап 1.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.4
Умножим на .
Этап 1.2
Переформулируем задачу с помощью и .
Этап 2
Этап 2.1
Умножим на обратную дробь, чтобы разделить на .
Этап 2.2
Умножим на .
Этап 2.3
Перенесем влево от .
Этап 3
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 4
Этап 4.1
Пусть . Найдем .
Этап 4.1.1
Дифференцируем .
Этап 4.1.2
Производная по равна .
Этап 4.2
Переформулируем задачу с помощью и .
Этап 5
Разделим данный интеграл на несколько интегралов.
Этап 6
Применим правило дифференцирования постоянных функций.
Этап 7
По правилу степени интеграл по имеет вид .
Этап 8
Этап 8.1
Объединим и .
Этап 8.2
Упростим.
Этап 9
Этап 9.1
Заменим все вхождения на .
Этап 9.2
Заменим все вхождения на .
Этап 10
Этап 10.1
Объединим и .
Этап 10.2
Применим свойство дистрибутивности.
Этап 10.3
Умножим на .
Этап 10.4
Сократим общий множитель .
Этап 10.4.1
Сократим общий множитель.
Этап 10.4.2
Перепишем это выражение.
Этап 11
Изменим порядок членов.