Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Поскольку является константой относительно , производная по равна .
Этап 1.2
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 1.3
Продифференцируем.
Этап 1.3.1
По правилу суммы производная по имеет вид .
Этап 1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.3
Поскольку является константой относительно , производная относительно равна .
Этап 1.3.4
Добавим и .
Этап 1.4
Умножим на , сложив экспоненты.
Этап 1.4.1
Перенесем .
Этап 1.4.2
Умножим на .
Этап 1.4.2.1
Возведем в степень .
Этап 1.4.2.2
Применим правило степени для объединения показателей.
Этап 1.4.3
Добавим и .
Этап 1.5
Перенесем влево от .
Этап 1.6
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.7
Перенесем влево от .
Этап 1.8
Упростим.
Этап 1.8.1
Применим свойство дистрибутивности.
Этап 1.8.2
Применим свойство дистрибутивности.
Этап 1.8.3
Применим свойство дистрибутивности.
Этап 1.8.4
Объединим термины.
Этап 1.8.4.1
Умножим на .
Этап 1.8.4.2
Умножим на , сложив экспоненты.
Этап 1.8.4.2.1
Перенесем .
Этап 1.8.4.2.2
Применим правило степени для объединения показателей.
Этап 1.8.4.2.3
Добавим и .
Этап 1.8.4.3
Умножим на .
Этап 1.8.4.4
Умножим на .
Этап 1.8.4.5
Умножим на .
Этап 1.8.4.6
Добавим и .
Этап 2
Этап 2.1
По правилу суммы производная по имеет вид .
Этап 2.2
Найдем значение .
Этап 2.2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.3
Умножим на .
Этап 2.3
Найдем значение .
Этап 2.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.3
Умножим на .
Этап 3
Этап 3.1
По правилу суммы производная по имеет вид .
Этап 3.2
Найдем значение .
Этап 3.2.1
Поскольку является константой относительно , производная по равна .
Этап 3.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.2.3
Умножим на .
Этап 3.3
Найдем значение .
Этап 3.3.1
Поскольку является константой относительно , производная по равна .
Этап 3.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3.3
Умножим на .
Этап 4
Этап 4.1
По правилу суммы производная по имеет вид .
Этап 4.2
Найдем значение .
Этап 4.2.1
Поскольку является константой относительно , производная по равна .
Этап 4.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.2.3
Умножим на .
Этап 4.3
Продифференцируем, используя правило константы.
Этап 4.3.1
Поскольку является константой относительно , производная относительно равна .
Этап 4.3.2
Добавим и .
Этап 5
Четвертая производная по равна .