Математический анализ Примеры

Вычислим интеграл интеграл x/((3/2y-x)^2) по x
Этап 1
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 1.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 1.1.1
Дифференцируем .
Этап 1.1.2
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 1.1.2.1
По правилу суммы производная по имеет вид .
Этап 1.1.2.2
Поскольку является константой относительно , производная относительно равна .
Этап 1.1.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.3.3
Умножим на .
Этап 1.1.4
Вычтем из .
Этап 1.2
Переформулируем задачу с помощью и .
Этап 2
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.1
Вынесем знак минуса перед дробью.
Этап 2.2
Умножим на .
Этап 2.3
Объединим.
Этап 2.4
Применим свойство дистрибутивности.
Этап 2.5
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.5.1
Сократим общий множитель.
Этап 2.5.2
Перепишем это выражение.
Этап 2.6
Умножим на .
Этап 3
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 4
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 5
Применим основные правила для показателей степени.
Нажмите для увеличения количества этапов...
Этап 5.1
Вынесем из знаменателя, возведя в степень.
Этап 5.2
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 5.2.1
Применим правило степени и перемножим показатели, .
Этап 5.2.2
Умножим на .
Этап 6
Развернем .
Нажмите для увеличения количества этапов...
Этап 6.1
Применим свойство дистрибутивности.
Этап 6.2
Возведем в степень .
Этап 6.3
Применим правило степени для объединения показателей.
Этап 6.4
Вычтем из .
Этап 6.5
Изменим порядок и .
Этап 7
Разделим данный интеграл на несколько интегралов.
Этап 8
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 9
По правилу степени интеграл по имеет вид .
Этап 10
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 11
Интеграл по имеет вид .
Этап 12
Упростим.
Этап 13
Заменим все вхождения на .