Введите задачу...
Математический анализ Примеры
Этап 1
Пусть , где . Тогда . Заметим, что поскольку , выражение положительно.
Этап 2
Этап 2.1
Упростим .
Этап 2.1.1
Упростим каждый член.
Этап 2.1.1.1
Применим правило умножения к .
Этап 2.1.1.2
Возведем в степень .
Этап 2.1.2
Вынесем множитель из .
Этап 2.1.3
Вынесем множитель из .
Этап 2.1.4
Вынесем множитель из .
Этап 2.1.5
Применим формулу Пифагора.
Этап 2.1.6
Перепишем в виде .
Этап 2.1.7
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 2.2
Упростим.
Этап 2.2.1
Вынесем множитель из .
Этап 2.2.2
Применим правило умножения к .
Этап 2.2.3
Возведем в степень .
Этап 2.2.4
Умножим на .
Этап 2.2.5
Умножим на .
Этап 2.2.6
Возведем в степень .
Этап 2.2.7
Применим правило степени для объединения показателей.
Этап 2.2.8
Добавим и .
Этап 2.2.9
Возведем в степень .
Этап 2.2.10
Возведем в степень .
Этап 2.2.11
Применим правило степени для объединения показателей.
Этап 2.2.12
Добавим и .
Этап 3
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 4
Этап 4.1
Запишем как плюс
Этап 4.2
Перепишем в виде .
Этап 5
Используя формулы Пифагора, запишем в виде .
Этап 6
Этап 6.1
Пусть . Найдем .
Этап 6.1.1
Дифференцируем .
Этап 6.1.2
Производная по равна .
Этап 6.2
Переформулируем задачу с помощью и .
Этап 7
Умножим .
Этап 8
Этап 8.1
Умножим на .
Этап 8.2
Умножим на , сложив экспоненты.
Этап 8.2.1
Применим правило степени для объединения показателей.
Этап 8.2.2
Добавим и .
Этап 9
Разделим данный интеграл на несколько интегралов.
Этап 10
По правилу степени интеграл по имеет вид .
Этап 11
По правилу степени интеграл по имеет вид .
Этап 12
Этап 12.1
Упростим.
Этап 12.1.1
Объединим и .
Этап 12.1.2
Объединим и .
Этап 12.2
Упростим.
Этап 13
Этап 13.1
Заменим все вхождения на .
Этап 13.2
Заменим все вхождения на .
Этап 14
Изменим порядок членов.