Математический анализ Примеры

Вычислим интеграл интеграл 6/((3x+1)^3) в пределах от 2 до 5 по x
Этап 1
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 2
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 2.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 2.1.1
Дифференцируем .
Этап 2.1.2
По правилу суммы производная по имеет вид .
Этап 2.1.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.1.3.3
Умножим на .
Этап 2.1.4
Продифференцируем, используя правило константы.
Нажмите для увеличения количества этапов...
Этап 2.1.4.1
Поскольку является константой относительно , производная относительно равна .
Этап 2.1.4.2
Добавим и .
Этап 2.2
Подставим нижнее предельное значение вместо в .
Этап 2.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Умножим на .
Этап 2.3.2
Добавим и .
Этап 2.4
Подставим верхнее предельное значение вместо в .
Этап 2.5
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.5.1
Умножим на .
Этап 2.5.2
Добавим и .
Этап 2.6
Значения, найденные для и , будут использованы для вычисления данного определенного интеграла.
Этап 2.7
Переформулируем задачу, используя , и новые пределы интегрирования.
Этап 3
Упростим.
Нажмите для увеличения количества этапов...
Этап 3.1
Умножим на .
Этап 3.2
Перенесем влево от .
Этап 4
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 5
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 5.1
Упростим.
Нажмите для увеличения количества этапов...
Этап 5.1.1
Объединим и .
Этап 5.1.2
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 5.1.2.1
Вынесем множитель из .
Этап 5.1.2.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 5.1.2.2.1
Вынесем множитель из .
Этап 5.1.2.2.2
Сократим общий множитель.
Этап 5.1.2.2.3
Перепишем это выражение.
Этап 5.1.2.2.4
Разделим на .
Этап 5.2
Применим основные правила для показателей степени.
Нажмите для увеличения количества этапов...
Этап 5.2.1
Вынесем из знаменателя, возведя в степень.
Этап 5.2.2
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 5.2.2.1
Применим правило степени и перемножим показатели, .
Этап 5.2.2.2
Умножим на .
Этап 6
По правилу степени интеграл по имеет вид .
Этап 7
Упростим.
Нажмите для увеличения количества этапов...
Этап 7.1
Объединим и .
Этап 7.2
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 8
Подставим и упростим.
Нажмите для увеличения количества этапов...
Этап 8.1
Найдем значение в и в .
Этап 8.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 8.2.1
Возведем в степень .
Этап 8.2.2
Умножим на .
Этап 8.2.3
Возведем в степень .
Этап 8.2.4
Умножим на .
Этап 8.2.5
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 8.2.6
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 8.2.7
Запишем каждое выражение с общим знаменателем , умножив на подходящий множитель .
Нажмите для увеличения количества этапов...
Этап 8.2.7.1
Умножим на .
Этап 8.2.7.2
Умножим на .
Этап 8.2.7.3
Умножим на .
Этап 8.2.7.4
Умножим на .
Этап 8.2.8
Объединим числители над общим знаменателем.
Этап 8.2.9
Добавим и .
Этап 8.2.10
Объединим и .
Этап 8.2.11
Умножим на .
Этап 8.2.12
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 8.2.12.1
Вынесем множитель из .
Этап 8.2.12.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 8.2.12.2.1
Вынесем множитель из .
Этап 8.2.12.2.2
Сократим общий множитель.
Этап 8.2.12.2.3
Перепишем это выражение.
Этап 9
Результат можно представить в различном виде.
Точная форма:
Десятичная форма:
Этап 10