Введите задачу...
Математический анализ Примеры
Этап 1
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 2
Проинтегрируем по частям, используя формулу , где и .
Этап 3
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 4
Умножим на .
Этап 5
Проинтегрируем по частям, используя формулу , где и .
Этап 6
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 7
Умножим на .
Этап 8
Проинтегрируем по частям, используя формулу , где и .
Этап 9
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 10
Умножим на .
Этап 11
Проинтегрируем по частям, используя формулу , где и .
Этап 12
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 13
Умножим на .
Этап 14
Проинтегрируем по частям, используя формулу , где и .
Этап 15
Интеграл по имеет вид .
Этап 16
Перепишем в виде .