Математический анализ Примеры

Вычислим интеграл интеграл 8x^3e^(-x^4) в пределах от -8 до 8 по x
Этап 1
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 2
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 2.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 2.1.1
Дифференцируем .
Этап 2.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2
Подставим нижнее предельное значение вместо в .
Этап 2.3
Возведем в степень .
Этап 2.4
Подставим верхнее предельное значение вместо в .
Этап 2.5
Возведем в степень .
Этап 2.6
Значения, найденные для и , будут использованы для вычисления данного определенного интеграла.
Этап 2.7
Переформулируем задачу, используя , и новые пределы интегрирования.
Этап 3
Упростим.
Нажмите для увеличения количества этапов...
Этап 3.1
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 3.1.1
С помощью запишем в виде .
Этап 3.1.2
Применим правило степени и перемножим показатели, .
Этап 3.1.3
Объединим и .
Этап 3.1.4
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 3.1.4.1
Вынесем множитель из .
Этап 3.1.4.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 3.1.4.2.1
Вынесем множитель из .
Этап 3.1.4.2.2
Сократим общий множитель.
Этап 3.1.4.2.3
Перепишем это выражение.
Этап 3.1.4.2.4
Разделим на .
Этап 3.2
Объединим и .
Этап 3.3
Объединим и .
Этап 4
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 5
Упростим.
Нажмите для увеличения количества этапов...
Этап 5.1
Объединим и .
Этап 5.2
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 5.2.1
Вынесем множитель из .
Этап 5.2.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 5.2.2.1
Вынесем множитель из .
Этап 5.2.2.2
Сократим общий множитель.
Этап 5.2.2.3
Перепишем это выражение.
Этап 5.2.2.4
Разделим на .
Этап 6
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 6.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 6.1.1
Дифференцируем .
Этап 6.1.2
Поскольку является константой относительно , производная по равна .
Этап 6.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 6.1.4
Умножим на .
Этап 6.2
Подставим нижнее предельное значение вместо в .
Этап 6.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 6.3.1
Возведем в степень .
Этап 6.3.2
Умножим на .
Этап 6.4
Подставим верхнее предельное значение вместо в .
Этап 6.5
Упростим.
Нажмите для увеличения количества этапов...
Этап 6.5.1
Возведем в степень .
Этап 6.5.2
Умножим на .
Этап 6.6
Значения, найденные для и , будут использованы для вычисления данного определенного интеграла.
Этап 6.7
Переформулируем задачу, используя , и новые пределы интегрирования.
Этап 7
Упростим.
Нажмите для увеличения количества этапов...
Этап 7.1
Вынесем знак минуса перед дробью.
Этап 7.2
Объединим и .
Этап 8
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 9
Умножим на .
Этап 10
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 11
Упростим.
Нажмите для увеличения количества этапов...
Этап 11.1
Объединим и .
Этап 11.2
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 11.2.1
Вынесем множитель из .
Этап 11.2.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 11.2.2.1
Вынесем множитель из .
Этап 11.2.2.2
Сократим общий множитель.
Этап 11.2.2.3
Перепишем это выражение.
Этап 11.2.2.4
Разделим на .
Этап 12
Интеграл по имеет вид .
Этап 13
Подставим и упростим.
Нажмите для увеличения количества этапов...
Этап 13.1
Найдем значение в и в .
Этап 13.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 13.2.1
Вычтем из .
Этап 13.2.2
Умножим на .
Этап 14