Математический анализ Примеры

Найти область, где выполняются условия теоремы Лагранжа о среднем значении f(x)=x^4-3x^3+4 , [1,2]
,
Этап 1
Если функция непрерывна на интервале и дифференцируема на , тогда на интервале существует хотя бы одно вещественное число , такое что . Теорема о среднем выражает отношение между угловым коэффициентом касательной к кривой при и угловым коэффициентом прямой, проходящей через точки и .
Если выражение непрерывно на
и если выражение дифференцируемо на ,
тогда существует хотя бы одна точка на : .
Этап 2
Проверим непрерывность .
Нажмите для увеличения количества этапов...
Этап 2.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Интервальное представление:
Обозначение построения множества:
Этап 2.2
 — непрерывное выражение в области .
Функция является непрерывной.
Функция является непрерывной.
Этап 3
Найдем производную.
Нажмите для увеличения количества этапов...
Этап 3.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 3.1.1
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 3.1.1.1
По правилу суммы производная по имеет вид .
Этап 3.1.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.1.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 3.1.2.1
Поскольку является константой относительно , производная по равна .
Этап 3.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.1.2.3
Умножим на .
Этап 3.1.3
Продифференцируем, используя правило константы.
Нажмите для увеличения количества этапов...
Этап 3.1.3.1
Поскольку является константой относительно , производная относительно равна .
Этап 3.1.3.2
Добавим и .
Этап 3.2
Первая производная по равна .
Этап 4
Выясним, является ли производная непрерывной на .
Нажмите для увеличения количества этапов...
Этап 4.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Интервальное представление:
Обозначение построения множества:
Этап 4.2
 — непрерывное выражение в области .
Функция является непрерывной.
Функция является непрерывной.
Этап 5
Функция является дифференцируемой на , поскольку производная является непрерывной на .
Функция является дифференцируемой.
Этап 6
удовлетворяет двум условиям теоремы о среднем. Это непрерывное выражение в области , дифференцируемое в области .
 — непрерывное выражение в области , дифференцируемое в области .
Этап 7
Найдем значение из интервала .
Нажмите для увеличения количества этапов...
Этап 7.1
Заменим в этом выражении переменную на .
Этап 7.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 7.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 7.2.1.1
Единица в любой степени равна единице.
Этап 7.2.1.2
Единица в любой степени равна единице.
Этап 7.2.1.3
Умножим на .
Этап 7.2.2
Упростим путем сложения и вычитания.
Нажмите для увеличения количества этапов...
Этап 7.2.2.1
Вычтем из .
Этап 7.2.2.2
Добавим и .
Этап 7.2.3
Окончательный ответ: .
Этап 8
Найдем значение из интервала .
Нажмите для увеличения количества этапов...
Этап 8.1
Заменим в этом выражении переменную на .
Этап 8.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 8.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 8.2.1.1
Возведем в степень .
Этап 8.2.1.2
Возведем в степень .
Этап 8.2.1.3
Умножим на .
Этап 8.2.2
Упростим путем сложения и вычитания.
Нажмите для увеличения количества этапов...
Этап 8.2.2.1
Вычтем из .
Этап 8.2.2.2
Добавим и .
Этап 8.2.3
Окончательный ответ: .
Этап 9
Решим относительно . .
Нажмите для увеличения количества этапов...
Этап 9.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 9.1.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 9.1.1.1
Умножим на .
Этап 9.1.1.2
Вычтем из .
Этап 9.1.2
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 9.1.2.1
Умножим на .
Этап 9.1.2.2
Вычтем из .
Этап 9.1.3
Разделим на .
Этап 9.2
Построим график каждой части уравнения. Решение — абсцисса (координата x) точки пересечения.
Этап 10
Касательная, параллельная прямой, которая проходит через конечные точки и , находится в точке .
Касательная в точке параллельна прямой, которая проходит через конечные точки и .
Этап 11
Касательная, параллельная прямой, которая проходит через конечные точки и , находится в точке .
Касательная в точке параллельна прямой, которая проходит через конечные точки и .
Этап 12
Касательная, параллельная прямой, которая проходит через конечные точки и , находится в точке .
Касательная в точке параллельна прямой, которая проходит через конечные точки и .
Этап 13