Математический анализ Примеры

Этап 1
Продифференцируем обе части уравнения.
Этап 2
Продифференцируем левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 2.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.1.1
Чтобы применить цепное правило, зададим как .
Этап 2.1.2
Производная по равна .
Этап 2.1.3
Заменим все вхождения на .
Этап 2.2
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 2.2.1
По правилу суммы производная по имеет вид .
Этап 2.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3
Перепишем в виде .
Этап 3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4
Преобразуем уравнение, приравняв левую часть к правой.
Этап 5
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.1
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 5.1.1
Разделим каждый член на .
Этап 5.1.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 5.1.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.1.2.1.1
Сократим общий множитель.
Этап 5.1.2.1.2
Разделим на .
Этап 5.1.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 5.1.3.1
Перепишем в виде .
Этап 5.1.3.2
Перепишем в виде .
Этап 5.1.3.3
Выразим через синусы и косинусы.
Этап 5.1.3.4
Умножим на обратную дробь, чтобы разделить на .
Этап 5.1.3.5
Умножим на .
Этап 5.2
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 5.2.1
Вычтем из обеих частей уравнения.
Этап 5.2.2
Изменим порядок и .
Этап 5.2.3
Перепишем в виде .
Этап 5.2.4
Вынесем множитель из .
Этап 5.2.5
Вынесем множитель из .
Этап 5.2.6
Перепишем в виде .
Этап 5.2.7
Применим формулу Пифагора.
Этап 6
Заменим на .