Математический анализ Примеры

Этап 1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 1.1
Чтобы применить цепное правило, зададим как .
Этап 1.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 1.3
Заменим все вхождения на .
Этап 2
Поскольку является константой относительно , производная по равна .
Этап 3
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 3.1
Чтобы применить цепное правило, зададим как .
Этап 3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3
Заменим все вхождения на .
Этап 4
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 4.1
Умножим на .
Этап 4.2
По правилу суммы производная по имеет вид .
Этап 4.3
Поскольку является константой относительно , производная относительно равна .
Этап 4.4
Добавим и .
Этап 4.5
Поскольку является константой относительно , производная по равна .
Этап 4.6
Умножим на .
Этап 4.7
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.8
Умножим на .
Этап 5
Упростим.
Нажмите для увеличения количества этапов...
Этап 5.1
Применим свойство дистрибутивности.
Этап 5.2
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 5.2.1
Умножим на .
Этап 5.2.2
Умножим на .