Математический анализ Примеры

Найти абсолютный максимум и минимум на интервале y=x+sin(x) , 0<=x<=2pi
,
Этап 1
Найдем критические точки.
Нажмите для увеличения количества этапов...
Этап 1.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1.1.1
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 1.1.1.1.1
По правилу суммы производная по имеет вид .
Этап 1.1.1.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.1.2
Производная по равна .
Этап 1.1.2
Первая производная по равна .
Этап 1.2
Приравняем первую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Пусть первая производная равна .
Этап 1.2.2
Вычтем из обеих частей уравнения.
Этап 1.2.3
Возьмем обратный косинус обеих частей уравнения, чтобы извлечь из косинуса.
Этап 1.2.4
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.2.4.1
Точное значение : .
Этап 1.2.5
Функция косинуса отрицательна во втором и третьем квадрантах. Чтобы найти второе решение, вычтем угол приведения из и найдем решение в третьем квадранте.
Этап 1.2.6
Вычтем из .
Этап 1.2.7
Найдем период .
Нажмите для увеличения количества этапов...
Этап 1.2.7.1
Период функции можно вычислить по формуле .
Этап 1.2.7.2
Заменим на в формуле периода.
Этап 1.2.7.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 1.2.7.4
Разделим на .
Этап 1.2.8
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
Этап 1.3
Найдем значения, при которых производная не определена.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Этап 1.4
Вычислим для каждого значения , для которого производная равна или не определена.
Нажмите для увеличения количества этапов...
Этап 1.4.1
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 1.4.1.1
Подставим вместо .
Этап 1.4.1.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.4.1.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.4.1.2.1.1
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте.
Этап 1.4.1.2.1.2
Точное значение : .
Этап 1.4.1.2.2
Добавим и .
Этап 1.4.2
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 1.4.2.1
Подставим вместо .
Этап 1.4.2.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.4.2.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.4.2.2.1.1
Удалим число полных оборотов , чтобы угол оказался больше или равен и меньше .
Этап 1.4.2.2.1.2
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте.
Этап 1.4.2.2.1.3
Точное значение : .
Этап 1.4.2.2.2
Добавим и .
Этап 1.4.3
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 1.4.3.1
Подставим вместо .
Этап 1.4.3.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.4.3.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.4.3.2.1.1
Удалим число полных оборотов , чтобы угол оказался больше или равен и меньше .
Этап 1.4.3.2.1.2
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте.
Этап 1.4.3.2.1.3
Точное значение : .
Этап 1.4.3.2.2
Добавим и .
Этап 1.4.4
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 1.4.4.1
Подставим вместо .
Этап 1.4.4.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.4.4.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.4.4.2.1.1
Удалим число полных оборотов , чтобы угол оказался больше или равен и меньше .
Этап 1.4.4.2.1.2
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте.
Этап 1.4.4.2.1.3
Точное значение : .
Этап 1.4.4.2.2
Добавим и .
Этап 1.4.5
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 1.4.5.1
Подставим вместо .
Этап 1.4.5.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.4.5.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.4.5.2.1.1
Удалим число полных оборотов , чтобы угол оказался больше или равен и меньше .
Этап 1.4.5.2.1.2
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте.
Этап 1.4.5.2.1.3
Точное значение : .
Этап 1.4.5.2.2
Добавим и .
Этап 1.4.6
Перечислим все точки.
Этап 2
Исключим точки, которые не принадлежат данному интервалу.
Этап 3
Вычислим на включенных конечных точках.
Нажмите для увеличения количества этапов...
Этап 3.1
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 3.1.1
Подставим вместо .
Этап 3.1.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 3.1.2.1
Точное значение : .
Этап 3.1.2.2
Добавим и .
Этап 3.2
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 3.2.1
Подставим вместо .
Этап 3.2.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 3.2.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.2.2.1.1
Удалим число полных оборотов , чтобы угол оказался больше или равен и меньше .
Этап 3.2.2.1.2
Точное значение : .
Этап 3.2.2.2
Добавим и .
Этап 3.3
Перечислим все точки.
Этап 4
Сравним значения , найденные для каждого значения , чтобы определить абсолютные максимум и минимум на заданном интервале. Максимум будет наблюдаться при наибольшем значении , а минимум — при наименьшем значении .
Абсолютный максимум:
Абсолютный минимум:
Этап 5