Математический анализ Примеры

Найти абсолютный максимум и минимум на интервале f(x) = square root of x+5
Этап 1
Найдем первую производную функции.
Нажмите для увеличения количества этапов...
Этап 1.1
С помощью запишем в виде .
Этап 1.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Чтобы применить цепное правило, зададим как .
Этап 1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2.3
Заменим все вхождения на .
Этап 1.3
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 1.4
Объединим и .
Этап 1.5
Объединим числители над общим знаменателем.
Этап 1.6
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 1.6.1
Умножим на .
Этап 1.6.2
Вычтем из .
Этап 1.7
Объединим дроби.
Нажмите для увеличения количества этапов...
Этап 1.7.1
Вынесем знак минуса перед дробью.
Этап 1.7.2
Объединим и .
Этап 1.7.3
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 1.8
По правилу суммы производная по имеет вид .
Этап 1.9
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.10
Поскольку является константой относительно , производная относительно равна .
Этап 1.11
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 1.11.1
Добавим и .
Этап 1.11.2
Умножим на .
Этап 2
Найдем вторую производную функции.
Нажмите для увеличения количества этапов...
Этап 2.1
Продифференцируем, используя правило умножения на константу.
Нажмите для увеличения количества этапов...
Этап 2.1.1
Поскольку является константой относительно , производная по равна .
Этап 2.1.2
Применим основные правила для показателей степени.
Нажмите для увеличения количества этапов...
Этап 2.1.2.1
Перепишем в виде .
Этап 2.1.2.2
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 2.1.2.2.1
Применим правило степени и перемножим показатели, .
Этап 2.1.2.2.2
Объединим и .
Этап 2.1.2.2.3
Вынесем знак минуса перед дробью.
Этап 2.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.2.1
Чтобы применить цепное правило, зададим как .
Этап 2.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.3
Заменим все вхождения на .
Этап 2.3
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 2.4
Объединим и .
Этап 2.5
Объединим числители над общим знаменателем.
Этап 2.6
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 2.6.1
Умножим на .
Этап 2.6.2
Вычтем из .
Этап 2.7
Объединим дроби.
Нажмите для увеличения количества этапов...
Этап 2.7.1
Вынесем знак минуса перед дробью.
Этап 2.7.2
Объединим и .
Этап 2.7.3
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 2.7.4
Умножим на .
Этап 2.7.5
Умножим на .
Этап 2.8
По правилу суммы производная по имеет вид .
Этап 2.9
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.10
Поскольку является константой относительно , производная относительно равна .
Этап 2.11
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 2.11.1
Добавим и .
Этап 2.11.2
Умножим на .
Этап 3
Чтобы найти локальные максимумы и минимумы функции, приравняем производную к и решим полученное уравнение.
Этап 4
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 4.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 4.1.1
С помощью запишем в виде .
Этап 4.1.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 4.1.2.1
Чтобы применить цепное правило, зададим как .
Этап 4.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.1.2.3
Заменим все вхождения на .
Этап 4.1.3
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 4.1.4
Объединим и .
Этап 4.1.5
Объединим числители над общим знаменателем.
Этап 4.1.6
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 4.1.6.1
Умножим на .
Этап 4.1.6.2
Вычтем из .
Этап 4.1.7
Объединим дроби.
Нажмите для увеличения количества этапов...
Этап 4.1.7.1
Вынесем знак минуса перед дробью.
Этап 4.1.7.2
Объединим и .
Этап 4.1.7.3
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 4.1.8
По правилу суммы производная по имеет вид .
Этап 4.1.9
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.1.10
Поскольку является константой относительно , производная относительно равна .
Этап 4.1.11
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 4.1.11.1
Добавим и .
Этап 4.1.11.2
Умножим на .
Этап 4.2
Первая производная по равна .
Этап 5
Приравняем первую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 5.1
Пусть первая производная равна .
Этап 5.2
Приравняем числитель к нулю.
Этап 5.3
Поскольку , решения отсутствуют.
Нет решения
Нет решения
Этап 6
Найдем значения, при которых производная не определена.
Нажмите для увеличения количества этапов...
Этап 6.1
Преобразуем выражения, перейдя от дробных степеней к радикалам.
Нажмите для увеличения количества этапов...
Этап 6.1.1
Применим правило , чтобы представить возведение в степень в виде радикала.
Этап 6.1.2
Любое число, возведенное в степень , является основанием.
Этап 6.2
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 6.3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.3.1
Чтобы избавиться от радикала в левой части уравнения, возведем обе части уравнения в квадрат.
Этап 6.3.2
Упростим каждую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 6.3.2.1
С помощью запишем в виде .
Этап 6.3.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 6.3.2.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 6.3.2.2.1.1
Применим правило умножения к .
Этап 6.3.2.2.1.2
Возведем в степень .
Этап 6.3.2.2.1.3
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 6.3.2.2.1.3.1
Применим правило степени и перемножим показатели, .
Этап 6.3.2.2.1.3.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.3.2.2.1.3.2.1
Сократим общий множитель.
Этап 6.3.2.2.1.3.2.2
Перепишем это выражение.
Этап 6.3.2.2.1.4
Упростим.
Этап 6.3.2.2.1.5
Применим свойство дистрибутивности.
Этап 6.3.2.2.1.6
Умножим на .
Этап 6.3.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 6.3.2.3.1
Возведение в любую положительную степень дает .
Этап 6.3.3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.3.3.1
Вычтем из обеих частей уравнения.
Этап 6.3.3.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 6.3.3.2.1
Разделим каждый член на .
Этап 6.3.3.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 6.3.3.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.3.3.2.2.1.1
Сократим общий множитель.
Этап 6.3.3.2.2.1.2
Разделим на .
Этап 6.3.3.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 6.3.3.2.3.1
Разделим на .
Этап 6.4
Зададим подкоренное выражение в меньшим , чтобы узнать, где данное выражение не определено.
Этап 6.5
Вычтем из обеих частей неравенства.
Этап 6.6
Уравнение не определено, если знаменатель равен , аргумент под знаком квадратного корня меньше или аргумент под знаком логарифма меньше или равен .
Этап 7
Критические точки, которые необходимо вычислить.
Этап 8
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 9
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 9.1
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 9.1.1
Добавим и .
Этап 9.1.2
Перепишем в виде .
Этап 9.1.3
Применим правило степени и перемножим показатели, .
Этап 9.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 9.2.1
Сократим общий множитель.
Этап 9.2.2
Перепишем это выражение.
Этап 9.3
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 9.3.1
Возведение в любую положительную степень дает .
Этап 9.3.2
Умножим на .
Этап 9.3.3
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 9.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Неопределенные
Этап 10
Так как первая производная не изменила знак, локальные экстремумы отсутствуют.
Нет локальных экстремумов
Этап 11