Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Пусть . Найдем .
Этап 1.1.1
Дифференцируем .
Этап 1.1.2
Продифференцируем.
Этап 1.1.2.1
По правилу суммы производная по имеет вид .
Этап 1.1.2.2
Поскольку является константой относительно , производная относительно равна .
Этап 1.1.3
Найдем значение .
Этап 1.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.3.3
Умножим на .
Этап 1.1.4
Вычтем из .
Этап 1.2
Переформулируем задачу с помощью и .
Этап 2
Этап 2.1
Перепишем в виде .
Этап 2.1.1
С помощью запишем в виде .
Этап 2.1.2
Применим правило степени и перемножим показатели, .
Этап 2.1.3
Объединим и .
Этап 2.1.4
Сократим общий множитель .
Этап 2.1.4.1
Сократим общий множитель.
Этап 2.1.4.2
Перепишем это выражение.
Этап 2.1.5
Упростим.
Этап 2.2
Вынесем знак минуса перед дробью.
Этап 2.3
Объединим и .
Этап 3
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 4
Этап 4.1
Применим свойство дистрибутивности.
Этап 4.2
Объединим и .
Этап 4.3
Вынесем за скобки отрицательное значение.
Этап 4.4
Возведем в степень .
Этап 4.5
Применим правило степени для объединения показателей.
Этап 4.6
Запишем в виде дроби с общим знаменателем.
Этап 4.7
Объединим числители над общим знаменателем.
Этап 4.8
Добавим и .
Этап 4.9
Умножим на .
Этап 5
Вынесем знак минуса перед дробью.
Этап 6
Разделим данный интеграл на несколько интегралов.
Этап 7
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 8
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 9
По правилу степени интеграл по имеет вид .
Этап 10
Объединим и .
Этап 11
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 12
По правилу степени интеграл по имеет вид .
Этап 13
Этап 13.1
Объединим и .
Этап 13.2
Упростим.
Этап 14
Изменим порядок членов.
Этап 15
Заменим все вхождения на .