Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Пусть . Найдем .
Этап 1.1.1
Дифференцируем .
Этап 1.1.2
Перепишем в виде .
Этап 1.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.4
Перепишем выражение, используя правило отрицательных степеней .
Этап 1.2
Подставим нижнее предельное значение вместо в .
Этап 1.3
Упростим.
Этап 1.3.1
Умножим числитель на величину, обратную знаменателю.
Этап 1.3.2
Умножим на .
Этап 1.4
Подставим верхнее предельное значение вместо в .
Этап 1.5
Упростим.
Этап 1.5.1
Умножим числитель на величину, обратную знаменателю.
Этап 1.5.2
Умножим на .
Этап 1.6
Значения, найденные для и , будут использованы для вычисления данного определенного интеграла.
Этап 1.7
Переформулируем задачу, используя , и новые пределы интегрирования.
Этап 2
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 3
Интеграл по имеет вид .
Этап 4
Найдем значение в и в .
Этап 5
Точное значение : .
Этап 6
Этап 6.1
Упростим каждый член.
Этап 6.1.1
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте. Добавим минус к выражению, так как синус отрицательный в четвертом квадранте.
Этап 6.1.2
Точное значение : .
Этап 6.1.3
Умножим на .
Этап 6.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 6.3
Объединим и .
Этап 6.4
Объединим числители над общим знаменателем.
Этап 6.5
Упростим числитель.
Этап 6.5.1
Умножим на .
Этап 6.5.2
Вычтем из .
Этап 6.6
Вынесем знак минуса перед дробью.
Этап 6.7
Умножим .
Этап 6.7.1
Умножим на .
Этап 6.7.2
Умножим на .
Этап 7
Результат можно представить в различном виде.
Точная форма:
Десятичная форма:
Форма смешанных чисел: