Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Возьмем предел числителя и предел знаменателя.
Этап 1.2
Найдем предел числителя.
Этап 1.2.1
Вычислим предел.
Этап 1.2.1.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 1.2.1.2
Перенесем предел внутрь тригонометрической функции, поскольку косинус является непрерывной функцией.
Этап 1.2.1.3
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 1.2.1.4
Найдем предел , который является константой по мере приближения к .
Этап 1.2.1.5
Вынесем член из-под знака предела, так как он не зависит от .
Этап 1.2.1.6
Найдем предел , который является константой по мере приближения к .
Этап 1.2.2
Найдем предел , подставив значение для .
Этап 1.2.3
Упростим ответ.
Этап 1.2.3.1
Упростим каждый член.
Этап 1.2.3.1.1
Умножим .
Этап 1.2.3.1.1.1
Умножим на .
Этап 1.2.3.1.1.2
Умножим на .
Этап 1.2.3.1.2
Вычтем из .
Этап 1.2.3.1.3
Точное значение : .
Этап 1.2.3.1.4
Умножим на .
Этап 1.2.3.2
Вычтем из .
Этап 1.3
Найдем предел знаменателя.
Этап 1.3.1
Вычислим предел.
Этап 1.3.1.1
Внесем предел под знак логарифма.
Этап 1.3.1.2
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 1.3.1.3
Вынесем член из-под знака предела, так как он не зависит от .
Этап 1.3.1.4
Найдем предел , который является константой по мере приближения к .
Этап 1.3.2
Найдем предел , подставив значение для .
Этап 1.3.3
Упростим ответ.
Этап 1.3.3.1
Упростим каждый член.
Этап 1.3.3.1.1
Умножим на .
Этап 1.3.3.1.2
Умножим на .
Этап 1.3.3.2
Вычтем из .
Этап 1.3.3.3
Натуральный логарифм равен .
Этап 1.3.3.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.3.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 3
Этап 3.1
Продифференцируем числитель и знаменатель.
Этап 3.2
По правилу суммы производная по имеет вид .
Этап 3.3
Найдем значение .
Этап 3.3.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 3.3.1.1
Чтобы применить цепное правило, зададим как .
Этап 3.3.1.2
Производная по равна .
Этап 3.3.1.3
Заменим все вхождения на .
Этап 3.3.2
По правилу суммы производная по имеет вид .
Этап 3.3.3
Поскольку является константой относительно , производная относительно равна .
Этап 3.3.4
Поскольку является константой относительно , производная по равна .
Этап 3.3.5
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3.6
Умножим на .
Этап 3.3.7
Вычтем из .
Этап 3.3.8
Умножим на .
Этап 3.4
Поскольку является константой относительно , производная относительно равна .
Этап 3.5
Добавим и .
Этап 3.6
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 3.6.1
Чтобы применить цепное правило, зададим как .
Этап 3.6.2
Производная по равна .
Этап 3.6.3
Заменим все вхождения на .
Этап 3.7
По правилу суммы производная по имеет вид .
Этап 3.8
Поскольку является константой относительно , производная по равна .
Этап 3.9
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.10
Умножим на .
Этап 3.11
Поскольку является константой относительно , производная относительно равна .
Этап 3.12
Добавим и .
Этап 3.13
Объединим и .
Этап 4
Умножим числитель на величину, обратную знаменателю.
Этап 5
Этап 5.1
Объединим и .
Этап 5.2
Объединим и .
Этап 6
Этап 6.1
Сократим общий множитель.
Этап 6.2
Разделим на .
Этап 7
Разобьем предел с помощью правила произведения пределов при стремлении к .
Этап 8
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 9
Вынесем член из-под знака предела, так как он не зависит от .
Этап 10
Найдем предел , который является константой по мере приближения к .
Этап 11
Перенесем предел внутрь тригонометрической функции, поскольку синус является непрерывной функцией.
Этап 12
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 13
Найдем предел , который является константой по мере приближения к .
Этап 14
Вынесем член из-под знака предела, так как он не зависит от .
Этап 15
Этап 15.1
Найдем предел , подставив значение для .
Этап 15.2
Найдем предел , подставив значение для .
Этап 16
Этап 16.1
Упростим каждый член.
Этап 16.1.1
Умножим на .
Этап 16.1.2
Умножим на .
Этап 16.2
Вычтем из .
Этап 16.3
Умножим на .
Этап 16.4
Умножим .
Этап 16.4.1
Умножим на .
Этап 16.4.2
Умножим на .
Этап 16.5
Вычтем из .
Этап 16.6
Точное значение : .