Введите задачу...
ΠΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ Π°Π½Π°Π»ΠΈΠ· ΠΡΠΈΠΌΠ΅ΡΡ
ΠΡΠ°ΠΏ 1
ΠΡΠ°ΠΏ 1.1
ΠΡΠΎΠ΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π³Π»Π°ΡΠΈΡ, ΡΡΠΎ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ , Π³Π΄Π΅ .
ΠΡΠ°ΠΏ 1.2
Π§ΡΠΎΠ±Ρ Π·Π°ΠΏΠΈΡΠ°ΡΡ Π² Π²ΠΈΠ΄Π΅ Π΄ΡΠΎΠ±ΠΈ Ρ ΠΎΠ±ΡΠΈΠΌ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Π΅ΠΌ, ΡΠΌΠ½ΠΎΠΆΠΈΠΌ Π΅Π΅ Π½Π° .
ΠΡΠ°ΠΏ 1.3
ΠΠ±ΡΠ΅Π΄ΠΈΠ½ΠΈΠΌ ΠΈ .
ΠΡΠ°ΠΏ 1.4
ΠΠ±ΡΠ΅Π΄ΠΈΠ½ΠΈΠΌ ΡΠΈΡΠ»ΠΈΡΠ΅Π»ΠΈ Π½Π°Π΄ ΠΎΠ±ΡΠΈΠΌ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Π΅ΠΌ.
ΠΡΠ°ΠΏ 1.5
Π£ΠΏΡΠΎΡΡΠΈΠΌ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ.
ΠΡΠ°ΠΏ 1.5.1
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 1.5.2
ΠΡΡΡΠ΅ΠΌ ΠΈΠ· .
ΠΡΠ°ΠΏ 1.6
ΠΡΠ½Π΅ΡΠ΅ΠΌ Π·Π½Π°ΠΊ ΠΌΠΈΠ½ΡΡΠ° ΠΏΠ΅ΡΠ΅Π΄ Π΄ΡΠΎΠ±ΡΡ.
ΠΡΠ°ΠΏ 1.7
Π£ΠΏΡΠΎΡΡΠΈΠΌ.
ΠΡΠ°ΠΏ 1.7.1
ΠΠ΅ΡΠ΅ΠΏΠΈΡΠ΅ΠΌ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΡ
ΡΡΠ΅ΠΏΠ΅Π½Π΅ΠΉ .
ΠΡΠ°ΠΏ 1.7.2
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 2
ΠΡΠ°ΠΏ 2.1
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΊΠΎΠ½ΡΡΠ°Π½ΡΠΎΠΉ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ , ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠΎ ΡΠ°Π²Π½Π° .
ΠΡΠ°ΠΏ 2.2
ΠΡΠΈΠΌΠ΅Π½ΠΈΠΌ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΏΡΠ°Π²ΠΈΠ»Π° Π΄Π»Ρ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ.
ΠΡΠ°ΠΏ 2.2.1
ΠΠ΅ΡΠ΅ΠΏΠΈΡΠ΅ΠΌ Π² Π²ΠΈΠ΄Π΅ .
ΠΡΠ°ΠΏ 2.2.2
ΠΠ΅ΡΠ΅ΠΌΠ½ΠΎΠΆΠΈΠΌ ΡΠΊΡΠΏΠΎΠ½Π΅Π½ΡΡ Π² .
ΠΡΠ°ΠΏ 2.2.2.1
ΠΡΠΈΠΌΠ΅Π½ΠΈΠΌ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ½ΠΎΠΆΠΈΠΌ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΠΈ, .
ΠΡΠ°ΠΏ 2.2.2.2
ΠΠ±ΡΠ΅Π΄ΠΈΠ½ΠΈΠΌ ΠΈ .
ΠΡΠ°ΠΏ 2.2.2.3
ΠΡΠ½Π΅ΡΠ΅ΠΌ Π·Π½Π°ΠΊ ΠΌΠΈΠ½ΡΡΠ° ΠΏΠ΅ΡΠ΅Π΄ Π΄ΡΠΎΠ±ΡΡ.
ΠΡΠ°ΠΏ 2.3
ΠΡΠΎΠ΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π³Π»Π°ΡΠΈΡ, ΡΡΠΎ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ , Π³Π΄Π΅ .
ΠΡΠ°ΠΏ 2.4
Π§ΡΠΎΠ±Ρ Π·Π°ΠΏΠΈΡΠ°ΡΡ Π² Π²ΠΈΠ΄Π΅ Π΄ΡΠΎΠ±ΠΈ Ρ ΠΎΠ±ΡΠΈΠΌ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Π΅ΠΌ, ΡΠΌΠ½ΠΎΠΆΠΈΠΌ Π΅Π΅ Π½Π° .
ΠΡΠ°ΠΏ 2.5
ΠΠ±ΡΠ΅Π΄ΠΈΠ½ΠΈΠΌ ΠΈ .
ΠΡΠ°ΠΏ 2.6
ΠΠ±ΡΠ΅Π΄ΠΈΠ½ΠΈΠΌ ΡΠΈΡΠ»ΠΈΡΠ΅Π»ΠΈ Π½Π°Π΄ ΠΎΠ±ΡΠΈΠΌ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Π΅ΠΌ.
ΠΡΠ°ΠΏ 2.7
Π£ΠΏΡΠΎΡΡΠΈΠΌ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ.
ΠΡΠ°ΠΏ 2.7.1
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 2.7.2
ΠΡΡΡΠ΅ΠΌ ΠΈΠ· .
ΠΡΠ°ΠΏ 2.8
ΠΡΠ½Π΅ΡΠ΅ΠΌ Π·Π½Π°ΠΊ ΠΌΠΈΠ½ΡΡΠ° ΠΏΠ΅ΡΠ΅Π΄ Π΄ΡΠΎΠ±ΡΡ.
ΠΡΠ°ΠΏ 2.9
ΠΠ±ΡΠ΅Π΄ΠΈΠ½ΠΈΠΌ ΠΈ .
ΠΡΠ°ΠΏ 2.10
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 2.11
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ.
ΠΡΠ°ΠΏ 2.11.1
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 2.11.2
ΠΠ΅ΡΠ΅Π½Π΅ΡΠ΅ΠΌ Π² Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΡ
ΡΡΠ΅ΠΏΠ΅Π½Π΅ΠΉ .
ΠΡΠ°ΠΏ 3
Π§ΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ Π»ΠΎΠΊΠ°Π»ΡΠ½ΡΠ΅ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΡ ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΡ ΡΡΠ½ΠΊΡΠΈΠΈ, ΠΏΡΠΈΡΠ°Π²Π½ΡΠ΅ΠΌ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΠΊ ΠΈ ΡΠ΅ΡΠΈΠΌ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅.
ΠΡΠ°ΠΏ 4
ΠΡΠ°ΠΏ 4.1
ΠΠ°ΠΉΠ΄Π΅ΠΌ ΠΏΠ΅ΡΠ²ΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ.
ΠΡΠ°ΠΏ 4.1.1
ΠΡΠΎΠ΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π³Π»Π°ΡΠΈΡ, ΡΡΠΎ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ , Π³Π΄Π΅ .
ΠΡΠ°ΠΏ 4.1.2
Π§ΡΠΎΠ±Ρ Π·Π°ΠΏΠΈΡΠ°ΡΡ Π² Π²ΠΈΠ΄Π΅ Π΄ΡΠΎΠ±ΠΈ Ρ ΠΎΠ±ΡΠΈΠΌ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Π΅ΠΌ, ΡΠΌΠ½ΠΎΠΆΠΈΠΌ Π΅Π΅ Π½Π° .
ΠΡΠ°ΠΏ 4.1.3
ΠΠ±ΡΠ΅Π΄ΠΈΠ½ΠΈΠΌ ΠΈ .
ΠΡΠ°ΠΏ 4.1.4
ΠΠ±ΡΠ΅Π΄ΠΈΠ½ΠΈΠΌ ΡΠΈΡΠ»ΠΈΡΠ΅Π»ΠΈ Π½Π°Π΄ ΠΎΠ±ΡΠΈΠΌ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Π΅ΠΌ.
ΠΡΠ°ΠΏ 4.1.5
Π£ΠΏΡΠΎΡΡΠΈΠΌ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ.
ΠΡΠ°ΠΏ 4.1.5.1
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 4.1.5.2
ΠΡΡΡΠ΅ΠΌ ΠΈΠ· .
ΠΡΠ°ΠΏ 4.1.6
ΠΡΠ½Π΅ΡΠ΅ΠΌ Π·Π½Π°ΠΊ ΠΌΠΈΠ½ΡΡΠ° ΠΏΠ΅ΡΠ΅Π΄ Π΄ΡΠΎΠ±ΡΡ.
ΠΡΠ°ΠΏ 4.1.7
Π£ΠΏΡΠΎΡΡΠΈΠΌ.
ΠΡΠ°ΠΏ 4.1.7.1
ΠΠ΅ΡΠ΅ΠΏΠΈΡΠ΅ΠΌ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΡ
ΡΡΠ΅ΠΏΠ΅Π½Π΅ΠΉ .
ΠΡΠ°ΠΏ 4.1.7.2
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 4.2
ΠΠ΅ΡΠ²Π°Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠΎ ΡΠ°Π²Π½Π° .
ΠΡΠ°ΠΏ 5
ΠΡΠ°ΠΏ 5.1
ΠΡΡΡΡ ΠΏΠ΅ΡΠ²Π°Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΠ°Π²Π½Π° .
ΠΡΠ°ΠΏ 5.2
ΠΡΠΈΡΠ°Π²Π½ΡΠ΅ΠΌ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ ΠΊ Π½ΡΠ»Ρ.
ΠΡΠ°ΠΏ 5.3
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ , ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΎΡΡΡΡΡΡΠ²ΡΡΡ.
ΠΠ΅Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ
ΠΠ΅Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ
ΠΡΠ°ΠΏ 6
ΠΡΠ°ΠΏ 6.1
ΠΡΠ΅ΠΎΠ±ΡΠ°Π·ΡΠ΅ΠΌ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ, ΠΏΠ΅ΡΠ΅ΠΉΠ΄Ρ ΠΎΡ Π΄ΡΠΎΠ±Π½ΡΡ
ΡΡΠ΅ΠΏΠ΅Π½Π΅ΠΉ ΠΊ ΡΠ°Π΄ΠΈΠΊΠ°Π»Π°ΠΌ.
ΠΡΠ°ΠΏ 6.1.1
ΠΡΠΈΠΌΠ΅Π½ΠΈΠΌ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ , ΡΡΠΎΠ±Ρ ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΡΡ Π²ΠΎΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π² ΡΡΠ΅ΠΏΠ΅Π½Ρ Π² Π²ΠΈΠ΄Π΅ ΡΠ°Π΄ΠΈΠΊΠ°Π»Π°.
ΠΡΠ°ΠΏ 6.1.2
ΠΡΠ±ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ, Π²ΠΎΠ·Π²Π΅Π΄Π΅Π½Π½ΠΎΠ΅ Π² ΡΡΠ΅ΠΏΠ΅Π½Ρ , ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ.
ΠΡΠ°ΠΏ 6.2
ΠΠ°Π΄Π°Π΄ΠΈΠΌ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ Π² ΡΠ°Π²Π½ΡΠΌ , ΡΡΠΎΠ±Ρ ΡΠ·Π½Π°ΡΡ, Π³Π΄Π΅ Π΄Π°Π½Π½ΠΎΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Π½Π΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΎ.
ΠΡΠ°ΠΏ 6.3
Π Π΅ΡΠΈΠΌ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ .
ΠΡΠ°ΠΏ 6.3.1
Π§ΡΠΎΠ±Ρ ΠΈΠ·Π±Π°Π²ΠΈΡΡΡΡ ΠΎΡ ΡΠ°Π΄ΠΈΠΊΠ°Π»Π° Π² Π»Π΅Π²ΠΎΠΉ ΡΠ°ΡΡΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ, Π²ΠΎΠ·Π²Π΅Π΄Π΅ΠΌ ΠΎΠ±Π΅ ΡΠ°ΡΡΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π² ΠΊΡΠ±.
ΠΡΠ°ΠΏ 6.3.2
Π£ΠΏΡΠΎΡΡΠΈΠΌ ΠΊΠ°ΠΆΠ΄ΡΡ ΡΠ°ΡΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ.
ΠΡΠ°ΠΏ 6.3.2.1
Π‘ ΠΏΠΎΠΌΠΎΡΡΡ Π·Π°ΠΏΠΈΡΠ΅ΠΌ Π² Π²ΠΈΠ΄Π΅ .
ΠΡΠ°ΠΏ 6.3.2.2
Π£ΠΏΡΠΎΡΡΠΈΠΌ Π»Π΅Π²ΡΡ ΡΠ°ΡΡΡ.
ΠΡΠ°ΠΏ 6.3.2.2.1
Π£ΠΏΡΠΎΡΡΠΈΠΌ .
ΠΡΠ°ΠΏ 6.3.2.2.1.1
ΠΡΠΈΠΌΠ΅Π½ΠΈΠΌ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΠΊ .
ΠΡΠ°ΠΏ 6.3.2.2.1.2
ΠΠΎΠ·Π²Π΅Π΄Π΅ΠΌ Π² ΡΡΠ΅ΠΏΠ΅Π½Ρ .
ΠΡΠ°ΠΏ 6.3.2.2.1.3
ΠΠ΅ΡΠ΅ΠΌΠ½ΠΎΠΆΠΈΠΌ ΡΠΊΡΠΏΠΎΠ½Π΅Π½ΡΡ Π² .
ΠΡΠ°ΠΏ 6.3.2.2.1.3.1
ΠΡΠΈΠΌΠ΅Π½ΠΈΠΌ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ½ΠΎΠΆΠΈΠΌ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΠΈ, .
ΠΡΠ°ΠΏ 6.3.2.2.1.3.2
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ .
ΠΡΠ°ΠΏ 6.3.2.2.1.3.2.1
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ.
ΠΡΠ°ΠΏ 6.3.2.2.1.3.2.2
ΠΠ΅ΡΠ΅ΠΏΠΈΡΠ΅ΠΌ ΡΡΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅.
ΠΡΠ°ΠΏ 6.3.2.2.1.4
Π£ΠΏΡΠΎΡΡΠΈΠΌ.
ΠΡΠ°ΠΏ 6.3.2.3
Π£ΠΏΡΠΎΡΡΠΈΠΌ ΠΏΡΠ°Π²ΡΡ ΡΠ°ΡΡΡ.
ΠΡΠ°ΠΏ 6.3.2.3.1
ΠΠΎΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π² Π»ΡΠ±ΡΡ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΡ ΡΡΠ΅ΠΏΠ΅Π½Ρ Π΄Π°Π΅Ρ .
ΠΡΠ°ΠΏ 6.3.3
Π Π°Π·Π΄Π΅Π»ΠΈΠΌ ΠΊΠ°ΠΆΠ΄ΡΠΉ ΡΠ»Π΅Π½ Π½Π° ΠΈ ΡΠΏΡΠΎΡΡΠΈΠΌ.
ΠΡΠ°ΠΏ 6.3.3.1
Π Π°Π·Π΄Π΅Π»ΠΈΠΌ ΠΊΠ°ΠΆΠ΄ΡΠΉ ΡΠ»Π΅Π½ Π½Π° .
ΠΡΠ°ΠΏ 6.3.3.2
Π£ΠΏΡΠΎΡΡΠΈΠΌ Π»Π΅Π²ΡΡ ΡΠ°ΡΡΡ.
ΠΡΠ°ΠΏ 6.3.3.2.1
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ .
ΠΡΠ°ΠΏ 6.3.3.2.1.1
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ.
ΠΡΠ°ΠΏ 6.3.3.2.1.2
Π Π°Π·Π΄Π΅Π»ΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 6.3.3.3
Π£ΠΏΡΠΎΡΡΠΈΠΌ ΠΏΡΠ°Π²ΡΡ ΡΠ°ΡΡΡ.
ΠΡΠ°ΠΏ 6.3.3.3.1
Π Π°Π·Π΄Π΅Π»ΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 7
ΠΡΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΎΡΠΊΠΈ, ΠΊΠΎΡΠΎΡΡΠ΅ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎ Π²ΡΡΠΈΡΠ»ΠΈΡΡ.
ΠΡΠ°ΠΏ 8
ΠΠ°ΠΉΠ΄Π΅ΠΌ Π²ΡΠΎΡΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ Π² . ΠΡΠ»ΠΈ Π²ΡΠΎΡΠ°Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½Π°, ΡΠΎ ΡΡΠΎ Π»ΠΎΠΊΠ°Π»ΡΠ½ΡΠΉ ΠΌΠΈΠ½ΠΈΠΌΡΠΌ. ΠΡΠ»ΠΈ ΠΎΠ½Π° ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½Π°, ΡΠΎ ΡΡΠΎ Π»ΠΎΠΊΠ°Π»ΡΠ½ΡΠΉ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌ.
ΠΡΠ°ΠΏ 9
ΠΡΠ°ΠΏ 9.1
Π£ΠΏΡΠΎΡΡΠΈΠΌ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅.
ΠΡΠ°ΠΏ 9.1.1
ΠΠ΅ΡΠ΅ΠΏΠΈΡΠ΅ΠΌ Π² Π²ΠΈΠ΄Π΅ .
ΠΡΠ°ΠΏ 9.1.2
ΠΡΠΈΠΌΠ΅Π½ΠΈΠΌ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ½ΠΎΠΆΠΈΠΌ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΠΈ, .
ΠΡΠ°ΠΏ 9.2
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ .
ΠΡΠ°ΠΏ 9.2.1
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ.
ΠΡΠ°ΠΏ 9.2.2
ΠΠ΅ΡΠ΅ΠΏΠΈΡΠ΅ΠΌ ΡΡΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅.
ΠΡΠ°ΠΏ 9.3
Π£ΠΏΡΠΎΡΡΠΈΠΌ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅.
ΠΡΠ°ΠΏ 9.3.1
ΠΠΎΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π² Π»ΡΠ±ΡΡ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΡ ΡΡΠ΅ΠΏΠ΅Π½Ρ Π΄Π°Π΅Ρ .
ΠΡΠ°ΠΏ 9.3.2
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 9.3.3
ΠΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΎΠ΄Π΅ΡΠΆΠΈΡ Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π½Π° . ΠΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Π½Π΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΎ.
ΠΠ΅ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΠ΅
ΠΡΠ°ΠΏ 9.4
ΠΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΎΠ΄Π΅ΡΠΆΠΈΡ Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π½Π° . ΠΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Π½Π΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΎ.
ΠΠ΅ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΠ΅
ΠΠ΅ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΠ΅
ΠΡΠ°ΠΏ 10
ΠΡΠ°ΠΏ 10.1
Π Π°Π·ΠΎΠ±ΡΠ΅ΠΌ Π½Π° ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΠ΅ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Ρ Π² ΠΎΠΊΡΠ΅ΡΡΠ½ΠΎΡΡΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ , ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΡΡ
ΠΏΠ΅ΡΠ²Π°Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΠ°Π²Π½Π° ΠΈΠ»ΠΈ Π½Π΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π°.
ΠΡΠ°ΠΏ 10.2
ΠΠΎΠ΄ΡΡΠ°Π²ΠΈΠΌ Π»ΡΠ±ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ ΡΠ°ΠΊΠΎΠ΅, ΡΡΠΎ , ΠΈΠ· ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π° Π² ΠΏΠ΅ΡΠ²ΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ , ΡΡΠΎΠ±Ρ ΠΏΡΠΎΠ²Π΅ΡΠΈΡΡ Π·Π½Π°ΠΊ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ° (ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ ΠΈΠ»ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ).
ΠΡΠ°ΠΏ 10.2.1
ΠΠ°ΠΌΠ΅Π½ΠΈΠΌ Π² ΡΡΠΎΠΌ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ Π½Π° .
ΠΡΠ°ΠΏ 10.2.2
ΠΠΊΠΎΠ½ΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ ΠΎΡΠ²Π΅Ρ: .
ΠΡΠ°ΠΏ 10.3
ΠΠΎΠ΄ΡΡΠ°Π²ΠΈΠΌ Π»ΡΠ±ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ ΡΠ°ΠΊΠΎΠ΅, ΡΡΠΎ , ΠΈΠ· ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π° Π² ΠΏΠ΅ΡΠ²ΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ , ΡΡΠΎΠ±Ρ ΠΏΡΠΎΠ²Π΅ΡΠΈΡΡ Π·Π½Π°ΠΊ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ° (ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ ΠΈΠ»ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ).
ΠΡΠ°ΠΏ 10.3.1
ΠΠ°ΠΌΠ΅Π½ΠΈΠΌ Π² ΡΡΠΎΠΌ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ Π½Π° .
ΠΡΠ°ΠΏ 10.3.2
Π£ΠΏΡΠΎΡΡΠΈΠΌ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ.
ΠΡΠ°ΠΏ 10.3.2.1
ΠΠ΅ΡΠ΅Π½Π΅ΡΠ΅ΠΌ Π² ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΡ
ΡΡΠ΅ΠΏΠ΅Π½Π΅ΠΉ .
ΠΡΠ°ΠΏ 10.3.2.2
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° , ΡΠ»ΠΎΠΆΠΈΠ² ΡΠΊΡΠΏΠΎΠ½Π΅Π½ΡΡ.
ΠΡΠ°ΠΏ 10.3.2.2.1
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° .
ΠΡΠ°ΠΏ 10.3.2.2.1.1
ΠΠΎΠ·Π²Π΅Π΄Π΅ΠΌ Π² ΡΡΠ΅ΠΏΠ΅Π½Ρ .
ΠΡΠ°ΠΏ 10.3.2.2.1.2
ΠΡΠΈΠΌΠ΅Π½ΠΈΠΌ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ Π΄Π»Ρ ΠΎΠ±ΡΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ.
ΠΡΠ°ΠΏ 10.3.2.2.2
ΠΠ°ΠΏΠΈΡΠ΅ΠΌ Π² Π²ΠΈΠ΄Π΅ Π΄ΡΠΎΠ±ΠΈ Ρ ΠΎΠ±ΡΠΈΠΌ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Π΅ΠΌ.
ΠΡΠ°ΠΏ 10.3.2.2.3
ΠΠ±ΡΠ΅Π΄ΠΈΠ½ΠΈΠΌ ΡΠΈΡΠ»ΠΈΡΠ΅Π»ΠΈ Π½Π°Π΄ ΠΎΠ±ΡΠΈΠΌ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Π΅ΠΌ.
ΠΡΠ°ΠΏ 10.3.2.2.4
ΠΡΡΡΠ΅ΠΌ ΠΈΠ· .
ΠΡΠ°ΠΏ 10.3.2.3
ΠΠΊΠΎΠ½ΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ ΠΎΡΠ²Π΅Ρ: .
ΠΡΠ°ΠΏ 10.4
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΠΏΠ΅ΡΠ²Π°Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΌΠ΅Π½ΡΠ΅Ρ Π·Π½Π°ΠΊ Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π½Π° ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ Π² ΠΎΠΊΡΠ΅ΡΡΠ½ΠΎΡΡΠΈ , Β β Π»ΠΎΠΊΠ°Π»ΡΠ½ΡΠΉ ΠΌΠΈΠ½ΠΈΠΌΡΠΌ.
Β β Π»ΠΎΠΊΠ°Π»ΡΠ½ΡΠΉ ΠΌΠΈΠ½ΠΈΠΌΡΠΌ
Β β Π»ΠΎΠΊΠ°Π»ΡΠ½ΡΠΉ ΠΌΠΈΠ½ΠΈΠΌΡΠΌ
ΠΡΠ°ΠΏ 11