Математический анализ Примеры

Решите Дифференциальное Уравнение (dy)/(dx)=(cos(x))/(3y-y^2)
Этап 1
Разделим переменные.
Нажмите для увеличения количества этапов...
Этап 1.1
Умножим обе части на .
Этап 1.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.2.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 1.2.1.1
Вынесем множитель из .
Этап 1.2.1.2
Вынесем множитель из .
Этап 1.2.1.3
Вынесем множитель из .
Этап 1.2.2
Применим свойство дистрибутивности.
Этап 1.2.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.2.3.1
Вынесем множитель из .
Этап 1.2.3.2
Сократим общий множитель.
Этап 1.2.3.3
Перепишем это выражение.
Этап 1.2.4
Объединим и .
Этап 1.2.5
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.2.5.1
Вынесем множитель из .
Этап 1.2.5.2
Сократим общий множитель.
Этап 1.2.5.3
Перепишем это выражение.
Этап 1.2.6
Объединим и .
Этап 1.2.7
Объединим числители над общим знаменателем.
Этап 1.2.8
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 1.2.8.1
Вынесем множитель из .
Этап 1.2.8.2
Вынесем множитель из .
Этап 1.2.8.3
Вынесем множитель из .
Этап 1.2.9
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.2.9.1
Сократим общий множитель.
Этап 1.2.9.2
Разделим на .
Этап 1.3
Перепишем уравнение.
Этап 2
Проинтегрируем обе части.
Нажмите для увеличения количества этапов...
Этап 2.1
Зададим интеграл на каждой стороне.
Этап 2.2
Проинтегрируем левую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Разделим данный интеграл на несколько интегралов.
Этап 2.2.2
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.2.3
По правилу степени интеграл по имеет вид .
Этап 2.2.4
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.2.5
По правилу степени интеграл по имеет вид .
Этап 2.2.6
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.2.6.1
Упростим.
Этап 2.2.6.2
Объединим и .
Этап 2.3
Интеграл по имеет вид .
Этап 2.4
Сгруппируем постоянную интегрирования в правой части как .