Математический анализ Примеры

Решите Дифференциальное Уравнение xy(dy)/(dx)=1-x^2
Этап 1
Разделим переменные.
Нажмите для увеличения количества этапов...
Этап 1.1
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Разделим каждый член на .
Этап 1.1.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 1.1.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.1.2.1.1
Сократим общий множитель.
Этап 1.1.2.1.2
Перепишем это выражение.
Этап 1.1.2.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.1.2.2.1
Сократим общий множитель.
Этап 1.1.2.2.2
Разделим на .
Этап 1.1.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.1.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.1.3.1.1
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 1.1.3.1.1.1
Вынесем множитель из .
Этап 1.1.3.1.1.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 1.1.3.1.1.2.1
Вынесем множитель из .
Этап 1.1.3.1.1.2.2
Сократим общий множитель.
Этап 1.1.3.1.1.2.3
Перепишем это выражение.
Этап 1.1.3.1.2
Вынесем знак минуса перед дробью.
Этап 1.2
Разложим на множители.
Нажмите для увеличения количества этапов...
Этап 1.2.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 1.2.2
Запишем каждое выражение с общим знаменателем , умножив на подходящий множитель .
Нажмите для увеличения количества этапов...
Этап 1.2.2.1
Умножим на .
Этап 1.2.2.2
Изменим порядок множителей в .
Этап 1.2.3
Объединим числители над общим знаменателем.
Этап 1.2.4
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 1.2.4.1
Перепишем в виде .
Этап 1.2.4.2
Перепишем в виде .
Этап 1.2.4.3
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Этап 1.3
Перегруппируем множители.
Этап 1.4
Умножим обе части на .
Этап 1.5
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.5.1
Умножим на .
Этап 1.5.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.5.2.1
Вынесем множитель из .
Этап 1.5.2.2
Сократим общий множитель.
Этап 1.5.2.3
Перепишем это выражение.
Этап 1.6
Перепишем уравнение.
Этап 2
Проинтегрируем обе части.
Нажмите для увеличения количества этапов...
Этап 2.1
Зададим интеграл на каждой стороне.
Этап 2.2
По правилу степени интеграл по имеет вид .
Этап 2.3
Проинтегрируем правую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Применим свойство дистрибутивности.
Этап 2.3.2
Применим свойство дистрибутивности.
Этап 2.3.3
Применим свойство дистрибутивности.
Этап 2.3.4
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 2.3.4.1
Изменим порядок и .
Этап 2.3.4.2
Изменим порядок и .
Этап 2.3.4.3
Умножим на .
Этап 2.3.4.4
Умножим на .
Этап 2.3.4.5
Умножим на .
Этап 2.3.5
Вынесем за скобки отрицательное значение.
Этап 2.3.6
Возведем в степень .
Этап 2.3.7
Возведем в степень .
Этап 2.3.8
Применим правило степени для объединения показателей.
Этап 2.3.9
Добавим и .
Этап 2.3.10
Добавим и .
Этап 2.3.11
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 2.3.11.1
Вычтем из .
Этап 2.3.11.2
Изменим порядок и .
Этап 2.3.12
Разделим на .
Нажмите для увеличения количества этапов...
Этап 2.3.12.1
Подготовим многочлены к делению. Если слагаемые представляют не все экспоненты, добавим отсутствующий член со значением .
+-++
Этап 2.3.12.2
Разделим член с максимальной степенью в делимом на член с максимальной степенью в делителе .
-
+-++
Этап 2.3.12.3
Умножим новое частное на делитель.
-
+-++
-+
Этап 2.3.12.4
Выражение необходимо вычесть из делимого, поэтому изменим все знаки в .
-
+-++
+-
Этап 2.3.12.5
После изменения знаков добавим последнее делимое из умноженного многочлена, чтобы найти новое делимое.
-
+-++
+-
Этап 2.3.12.6
Вынесем следующий член из исходного делимого в текущее делимое.
-
+-++
+-
+
Этап 2.3.12.7
Окончательный ответ: неполное частное плюс остаток, деленный на делитель.
Этап 2.3.13
Разделим данный интеграл на несколько интегралов.
Этап 2.3.14
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.3.15
По правилу степени интеграл по имеет вид .
Этап 2.3.16
Интеграл по имеет вид .
Этап 2.3.17
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.3.17.1
Объединим и .
Этап 2.3.17.2
Упростим.
Этап 2.4
Сгруппируем постоянную интегрирования в правой части как .
Этап 3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.1
Умножим обе части уравнения на .
Этап 3.2
Упростим обе части уравнения.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.1.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.2.1.1.1
Объединим и .
Этап 3.2.1.1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.1.1.2.1
Сократим общий множитель.
Этап 3.2.1.1.2.2
Перепишем это выражение.
Этап 3.2.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.2.2.1.1
Объединим и .
Этап 3.2.2.1.2
Применим свойство дистрибутивности.
Этап 3.2.2.1.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.2.1.3.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 3.2.2.1.3.2
Сократим общий множитель.
Этап 3.2.2.1.3.3
Перепишем это выражение.
Этап 3.3
Упростим путем переноса под логарифм.
Этап 3.4
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 3.5
Уберем знак модуля в , поскольку любое число в четной степени всегда положительное.
Этап 3.6
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Этап 3.6.1
Сначала с помощью положительного значения найдем первое решение.
Этап 3.6.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 3.6.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 4
Упростим постоянную интегрирования.