Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Добавим к обеим частям уравнения.
Этап 1.2
Вынесем множитель из .
Этап 1.3
Изменим порядок и .
Этап 2
Этап 2.1
Зададим интегрирование.
Этап 2.2
Проинтегрируем .
Этап 2.2.1
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.2.2
Пусть . Тогда , следовательно . Перепишем, используя и .
Этап 2.2.2.1
Пусть . Найдем .
Этап 2.2.2.1.1
Дифференцируем .
Этап 2.2.2.1.2
Поскольку является константой относительно , производная по равна .
Этап 2.2.2.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.2.1.4
Умножим на .
Этап 2.2.2.2
Переформулируем задачу с помощью и .
Этап 2.2.3
Объединим и .
Этап 2.2.4
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.2.5
Упростим.
Этап 2.2.5.1
Объединим и .
Этап 2.2.5.2
Сократим общий множитель .
Этап 2.2.5.2.1
Сократим общий множитель.
Этап 2.2.5.2.2
Перепишем это выражение.
Этап 2.2.5.3
Умножим на .
Этап 2.2.6
Интеграл по имеет вид .
Этап 2.2.7
Заменим все вхождения на .
Этап 2.3
Уберем постоянную интегрирования.
Этап 2.4
Экспонента и логарифм являются обратными функциями.
Этап 3
Этап 3.1
Умножим каждый член на .
Этап 3.2
Выразим через синусы и косинусы, затем сократим общие множители.
Этап 3.2.1
Перенесем круглые скобки.
Этап 3.2.2
Изменим порядок и .
Этап 3.2.3
Добавим круглые скобки.
Этап 3.2.4
Выразим через синусы и косинусы.
Этап 3.2.5
Сократим общие множители.
Этап 3.3
Изменим порядок множителей в .
Этап 4
Перепишем левую часть как результат дифференцирования произведения.
Этап 5
Зададим интеграл на каждой стороне.
Этап 6
Проинтегрируем левую часть.
Этап 7
Этап 7.1
Проинтегрируем по частям, используя формулу , где и .
Этап 7.2
Упростим.
Этап 7.2.1
Объединим и .
Этап 7.2.2
Объединим и .
Этап 7.3
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 7.4
Упростим.
Этап 7.4.1
Умножим на .
Этап 7.4.2
Умножим на .
Этап 7.5
Пусть . Тогда , следовательно . Перепишем, используя и .
Этап 7.5.1
Пусть . Найдем .
Этап 7.5.1.1
Дифференцируем .
Этап 7.5.1.2
Поскольку является константой относительно , производная по равна .
Этап 7.5.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 7.5.1.4
Умножим на .
Этап 7.5.2
Переформулируем задачу с помощью и .
Этап 7.6
Объединим и .
Этап 7.7
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 7.8
Упростим.
Этап 7.8.1
Умножим на .
Этап 7.8.2
Умножим на .
Этап 7.9
Интеграл по имеет вид .
Этап 7.10
Упростим.
Этап 7.10.1
Перепишем в виде .
Этап 7.10.2
Упростим.
Этап 7.10.2.1
Объединим и .
Этап 7.10.2.2
Объединим и .
Этап 7.11
Заменим все вхождения на .
Этап 7.12
Изменим порядок множителей в .
Этап 8
Этап 8.1
Упростим.
Этап 8.1.1
Объединим и .
Этап 8.1.2
Объединим и .
Этап 8.2
Разделим каждый член на и упростим.
Этап 8.2.1
Разделим каждый член на .
Этап 8.2.2
Упростим левую часть.
Этап 8.2.2.1
Сократим общий множитель .
Этап 8.2.2.1.1
Сократим общий множитель.
Этап 8.2.2.1.2
Разделим на .
Этап 8.2.3
Упростим правую часть.
Этап 8.2.3.1
Упростим каждый член.
Этап 8.2.3.1.1
Умножим числитель на величину, обратную знаменателю.
Этап 8.2.3.1.2
Переведем в .
Этап 8.2.3.1.3
Объединим и .
Этап 8.2.3.1.4
Сократим общий множитель .
Этап 8.2.3.1.4.1
Сократим общий множитель.
Этап 8.2.3.1.4.2
Разделим на .
Этап 8.2.3.1.5
Разделим дроби.
Этап 8.2.3.1.6
Переведем в .
Этап 8.2.3.1.7
Разделим на .
Этап 8.2.3.2
Изменим порядок множителей в .