Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Разложим дробь и умножим на общий знаменатель.
Этап 1.1.1
Разложим дробь на множители.
Этап 1.1.1.1
Вынесем множитель из .
Этап 1.1.1.1.1
Вынесем множитель из .
Этап 1.1.1.1.2
Вынесем множитель из .
Этап 1.1.1.1.3
Вынесем множитель из .
Этап 1.1.1.2
Перепишем в виде .
Этап 1.1.1.3
Разложим на множители.
Этап 1.1.1.3.1
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Этап 1.1.1.3.2
Избавимся от ненужных скобок.
Этап 1.1.2
Для каждого множителя в знаменателе создадим новую дробь, используя множитель в качестве знаменателя, а неизвестное значение — в качестве числителя. Поскольку множитель в знаменателе линейный, поместим одну переменную на его место .
Этап 1.1.3
Для каждого множителя в знаменателе создадим новую дробь, используя множитель в качестве знаменателя, а неизвестное значение — в качестве числителя. Поскольку множитель в знаменателе линейный, поместим одну переменную на его место .
Этап 1.1.4
Умножим каждую дробь в уравнении на знаменатель исходного выражения. В этом случае знаменатель равен .
Этап 1.1.5
Сократим общий множитель .
Этап 1.1.5.1
Сократим общий множитель.
Этап 1.1.5.2
Перепишем это выражение.
Этап 1.1.6
Сократим общий множитель .
Этап 1.1.6.1
Сократим общий множитель.
Этап 1.1.6.2
Перепишем это выражение.
Этап 1.1.7
Сократим общий множитель .
Этап 1.1.7.1
Сократим общий множитель.
Этап 1.1.7.2
Разделим на .
Этап 1.1.8
Упростим каждый член.
Этап 1.1.8.1
Сократим общий множитель .
Этап 1.1.8.1.1
Сократим общий множитель.
Этап 1.1.8.1.2
Разделим на .
Этап 1.1.8.2
Развернем , используя метод «первые-внешние-внутренние-последние».
Этап 1.1.8.2.1
Применим свойство дистрибутивности.
Этап 1.1.8.2.2
Применим свойство дистрибутивности.
Этап 1.1.8.2.3
Применим свойство дистрибутивности.
Этап 1.1.8.3
Объединим противоположные члены в .
Этап 1.1.8.3.1
Изменим порядок множителей в членах и .
Этап 1.1.8.3.2
Добавим и .
Этап 1.1.8.3.3
Добавим и .
Этап 1.1.8.4
Упростим каждый член.
Этап 1.1.8.4.1
Умножим на .
Этап 1.1.8.4.2
Умножим на .
Этап 1.1.8.5
Применим свойство дистрибутивности.
Этап 1.1.8.6
Перенесем влево от .
Этап 1.1.8.7
Сократим общий множитель .
Этап 1.1.8.7.1
Сократим общий множитель.
Этап 1.1.8.7.2
Разделим на .
Этап 1.1.8.8
Применим свойство дистрибутивности.
Этап 1.1.8.9
Умножим на .
Этап 1.1.8.10
Перенесем влево от .
Этап 1.1.8.11
Применим свойство дистрибутивности.
Этап 1.1.8.12
Перепишем, используя свойство коммутативности умножения.
Этап 1.1.8.13
Сократим общий множитель .
Этап 1.1.8.13.1
Сократим общий множитель.
Этап 1.1.8.13.2
Разделим на .
Этап 1.1.8.14
Применим свойство дистрибутивности.
Этап 1.1.8.15
Умножим на .
Этап 1.1.8.16
Перенесем влево от .
Этап 1.1.8.17
Применим свойство дистрибутивности.
Этап 1.1.8.18
Перепишем, используя свойство коммутативности умножения.
Этап 1.1.9
Упростим выражение.
Этап 1.1.9.1
Перенесем .
Этап 1.1.9.2
Перенесем .
Этап 1.1.9.3
Перенесем .
Этап 1.2
Составим уравнения для переменных элементарной дроби и используем их для создания системы уравнений.
Этап 1.2.1
Составим уравнение для переменных элементарной дроби, приравняв коэффициенты из каждой части уравнения. Чтобы уравнение было верным, эквивалентные коэффициенты в каждой части уравнения должны быть равны.
Этап 1.2.2
Составим уравнение для переменных элементарной дроби, приравняв коэффициенты из каждой части уравнения. Чтобы уравнение было верным, эквивалентные коэффициенты в каждой части уравнения должны быть равны.
Этап 1.2.3
Составим уравнение для переменных элементарной дроби, приравняв коэффициенты членов, не содержащих . Чтобы уравнение было верным, эквивалентные коэффициенты в каждой части уравнения должны быть равны.
Этап 1.2.4
Составим систему уравнений, чтобы найти коэффициенты элементарных дробей.
Этап 1.3
Решим систему уравнений.
Этап 1.3.1
Решим относительно в .
Этап 1.3.1.1
Перепишем уравнение в виде .
Этап 1.3.1.2
Разделим каждый член на и упростим.
Этап 1.3.1.2.1
Разделим каждый член на .
Этап 1.3.1.2.2
Упростим левую часть.
Этап 1.3.1.2.2.1
Сократим общий множитель .
Этап 1.3.1.2.2.1.1
Сократим общий множитель.
Этап 1.3.1.2.2.1.2
Разделим на .
Этап 1.3.1.2.3
Упростим правую часть.
Этап 1.3.1.2.3.1
Разделим на .
Этап 1.3.2
Заменим все вхождения на во всех уравнениях.
Этап 1.3.2.1
Заменим все вхождения в на .
Этап 1.3.2.2
Упростим правую часть.
Этап 1.3.2.2.1
Избавимся от скобок.
Этап 1.3.3
Решим относительно в .
Этап 1.3.3.1
Перепишем уравнение в виде .
Этап 1.3.3.2
Перенесем все члены без в правую часть уравнения.
Этап 1.3.3.2.1
Добавим к обеим частям уравнения.
Этап 1.3.3.2.2
Вычтем из обеих частей уравнения.
Этап 1.3.3.2.3
Добавим и .
Этап 1.3.4
Заменим все вхождения на во всех уравнениях.
Этап 1.3.4.1
Заменим все вхождения в на .
Этап 1.3.4.2
Упростим правую часть.
Этап 1.3.4.2.1
Упростим .
Этап 1.3.4.2.1.1
Упростим каждый член.
Этап 1.3.4.2.1.1.1
Применим свойство дистрибутивности.
Этап 1.3.4.2.1.1.2
Умножим на .
Этап 1.3.4.2.1.1.3
Умножим на .
Этап 1.3.4.2.1.2
Добавим и .
Этап 1.3.5
Решим относительно в .
Этап 1.3.5.1
Перепишем уравнение в виде .
Этап 1.3.5.2
Добавим к обеим частям уравнения.
Этап 1.3.5.3
Разделим каждый член на и упростим.
Этап 1.3.5.3.1
Разделим каждый член на .
Этап 1.3.5.3.2
Упростим левую часть.
Этап 1.3.5.3.2.1
Сократим общий множитель .
Этап 1.3.5.3.2.1.1
Сократим общий множитель.
Этап 1.3.5.3.2.1.2
Разделим на .
Этап 1.3.5.3.3
Упростим правую часть.
Этап 1.3.5.3.3.1
Сократим общий множитель и .
Этап 1.3.5.3.3.1.1
Вынесем множитель из .
Этап 1.3.5.3.3.1.2
Сократим общие множители.
Этап 1.3.5.3.3.1.2.1
Вынесем множитель из .
Этап 1.3.5.3.3.1.2.2
Сократим общий множитель.
Этап 1.3.5.3.3.1.2.3
Перепишем это выражение.
Этап 1.3.6
Заменим все вхождения на во всех уравнениях.
Этап 1.3.6.1
Заменим все вхождения в на .
Этап 1.3.6.2
Упростим правую часть.
Этап 1.3.6.2.1
Упростим .
Этап 1.3.6.2.1.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 1.3.6.2.1.2
Объединим и .
Этап 1.3.6.2.1.3
Объединим числители над общим знаменателем.
Этап 1.3.6.2.1.4
Упростим числитель.
Этап 1.3.6.2.1.4.1
Умножим на .
Этап 1.3.6.2.1.4.2
Вычтем из .
Этап 1.3.7
Перечислим все решения.
Этап 1.4
Заменим каждый коэффициент элементарной дроби в значениями, найденными для , и .
Этап 1.5
Упростим.
Этап 1.5.1
Умножим числитель на величину, обратную знаменателю.
Этап 1.5.2
Умножим на .
Этап 1.5.3
Умножим числитель на величину, обратную знаменателю.
Этап 1.5.4
Умножим на .
Этап 2
Разделим данный интеграл на несколько интегралов.
Этап 3
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 4
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 5
Умножим на .
Этап 6
Интеграл по имеет вид .
Этап 7
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 8
Этап 8.1
Пусть . Найдем .
Этап 8.1.1
Дифференцируем .
Этап 8.1.2
По правилу суммы производная по имеет вид .
Этап 8.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 8.1.4
Поскольку является константой относительно , производная относительно равна .
Этап 8.1.5
Добавим и .
Этап 8.2
Переформулируем задачу с помощью и .
Этап 9
Интеграл по имеет вид .
Этап 10
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 11
Этап 11.1
Пусть . Найдем .
Этап 11.1.1
Дифференцируем .
Этап 11.1.2
По правилу суммы производная по имеет вид .
Этап 11.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 11.1.4
Поскольку является константой относительно , производная относительно равна .
Этап 11.1.5
Добавим и .
Этап 11.2
Переформулируем задачу с помощью и .
Этап 12
Интеграл по имеет вид .
Этап 13
Упростим.
Этап 14
Этап 14.1
Заменим все вхождения на .
Этап 14.2
Заменим все вхождения на .