Математический анализ Примеры

Вычислим интеграл интеграл в пределах от 0 до 5 от 1/( квадратный корень из 9+4x^2) по x
Этап 1
Пусть , где . Тогда . Заметим, что поскольку , выражение положительно.
Этап 2
Упростим члены.
Нажмите для увеличения количества этапов...
Этап 2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 2.1.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.1.1.1
Объединим и .
Этап 2.1.1.2
Применим правило степени для распределения показателей.
Нажмите для увеличения количества этапов...
Этап 2.1.1.2.1
Применим правило умножения к .
Этап 2.1.1.2.2
Применим правило умножения к .
Этап 2.1.1.3
Возведем в степень .
Этап 2.1.1.4
Возведем в степень .
Этап 2.1.1.5
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.1.1.5.1
Сократим общий множитель.
Этап 2.1.1.5.2
Перепишем это выражение.
Этап 2.1.2
Вынесем множитель из .
Этап 2.1.3
Вынесем множитель из .
Этап 2.1.4
Вынесем множитель из .
Этап 2.1.5
Переставляем члены.
Этап 2.1.6
Применим формулу Пифагора.
Этап 2.1.7
Перепишем в виде .
Этап 2.1.8
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 2.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Умножим на .
Этап 2.2.2
Умножим на .
Этап 2.2.3
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 2.2.3.1
Вынесем множитель из .
Этап 2.2.3.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 2.2.3.2.1
Вынесем множитель из .
Этап 2.2.3.2.2
Сократим общий множитель.
Этап 2.2.3.2.3
Перепишем это выражение.
Этап 2.2.4
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 2.2.4.1
Вынесем множитель из .
Этап 2.2.4.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 2.2.4.2.1
Вынесем множитель из .
Этап 2.2.4.2.2
Сократим общий множитель.
Этап 2.2.4.2.3
Перепишем это выражение.
Этап 3
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 4
Интеграл по имеет вид .
Этап 5
Найдем значение в и в .
Этап 6
Упростим.
Нажмите для увеличения количества этапов...
Этап 6.1
Точное значение : .
Этап 6.2
Точное значение : .
Этап 6.3
Добавим и .
Этап 6.4
Используем формулу разности логарифмов с одинаковым основанием: .
Этап 6.5
Объединим и .
Этап 7
Упростим.
Нажмите для увеличения количества этапов...
Этап 7.1
приблизительно равно . Это положительное число, поэтому вычтем абсолютное значение.
Этап 7.2
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 7.3
Разделим на .
Этап 8
Результат можно представить в различном виде.
Точная форма:
Десятичная форма:
Этап 9