Введите задачу...
Математический анализ Примеры
Этап 1
Вынесем член из-под знака предела, так как он не зависит от .
Этап 2
Этап 2.1
Найдем предел числителя и предел знаменателя.
Этап 2.1.1
Возьмем предел числителя и предел знаменателя.
Этап 2.1.2
Найдем предел числителя.
Этап 2.1.2.1
Вычислим предел.
Этап 2.1.2.1.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 2.1.2.1.2
Найдем предел , который является константой по мере приближения к .
Этап 2.1.2.1.3
Вынесем член из-под знака предела, так как он не зависит от .
Этап 2.1.2.1.4
Внесем предел под знак экспоненты.
Этап 2.1.2.1.5
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 2.1.2.1.6
Найдем предел , который является константой по мере приближения к .
Этап 2.1.2.2
Найдем предел , подставив значение для .
Этап 2.1.2.3
Объединим противоположные члены в .
Этап 2.1.2.3.1
Добавим и .
Этап 2.1.2.3.2
Вычтем из .
Этап 2.1.3
Найдем предел , подставив значение для .
Этап 2.1.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 2.2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 2.3
Найдем производную числителя и знаменателя.
Этап 2.3.1
Продифференцируем числитель и знаменатель.
Этап 2.3.2
По правилу суммы производная по имеет вид .
Этап 2.3.3
Поскольку является константой относительно , производная относительно равна .
Этап 2.3.4
Найдем значение .
Этап 2.3.4.1
Поскольку является константой относительно , производная по равна .
Этап 2.3.4.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 2.3.4.2.1
Чтобы применить цепное правило, зададим как .
Этап 2.3.4.2.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 2.3.4.2.3
Заменим все вхождения на .
Этап 2.3.4.3
По правилу суммы производная по имеет вид .
Этап 2.3.4.4
Поскольку является константой относительно , производная относительно равна .
Этап 2.3.4.5
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.4.6
Добавим и .
Этап 2.3.4.7
Умножим на .
Этап 2.3.5
Вычтем из .
Этап 2.3.6
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.4
Разделим на .
Этап 3
Этап 3.1
Вынесем член из-под знака предела, так как он не зависит от .
Этап 3.2
Внесем предел под знак экспоненты.
Этап 3.3
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 3.4
Найдем предел , который является константой по мере приближения к .
Этап 4
Найдем предел , подставив значение для .
Этап 5
Этап 5.1
Объединим и .
Этап 5.2
Вынесем знак минуса перед дробью.
Этап 5.3
Добавим и .
Этап 5.4
Объединим и .
Этап 5.5
Перенесем влево от .