Математический анализ Примеры

Этап 1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Этап 3
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 3.1
По правилу суммы производная по имеет вид .
Этап 3.2
Поскольку является константой относительно , производная относительно равна .
Этап 3.3
Добавим и .
Этап 3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.5
Умножим на .
Этап 3.6
По правилу суммы производная по имеет вид .
Этап 3.7
Поскольку является константой относительно , производная относительно равна .
Этап 3.8
Добавим и .
Этап 3.9
Поскольку является константой относительно , производная по равна .
Этап 3.10
Умножим на .
Этап 3.11
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.12
Умножим на .
Этап 3.13
Поскольку является константой относительно , производная относительно равна .
Этап 3.14
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 3.14.1
Умножим на .
Этап 3.14.2
Добавим и .
Этап 4
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.1
Применим свойство дистрибутивности.
Этап 4.2
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Объединим противоположные члены в .
Нажмите для увеличения количества этапов...
Этап 4.2.1.1
Вычтем из .
Этап 4.2.1.2
Добавим и .
Этап 4.2.2
Умножим на .
Этап 4.2.3
Вычтем из .
Этап 4.3
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 4.3.1
Вынесем знак минуса перед дробью.
Этап 4.3.2
Умножим на .
Этап 4.3.3
Умножим на .