Введите задачу...
Математический анализ Примеры
,
Этап 1
Этап 1.1
Продифференцируем обе части уравнения.
Этап 1.2
Производная по равна .
Этап 1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.4
Преобразуем уравнение, приравняв левую часть к правой.
Этап 2
Этап 2.1
Зададим производную.
Этап 2.2
Поскольку является константой относительно , производная по равна .
Этап 2.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.4
Умножим на .
Этап 3
Этап 3.1
Зададим производную.
Этап 3.2
Поскольку является константой относительно , производная по равна .
Этап 3.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.4
Умножим на .
Этап 4
Этап 4.1
Зададим производную.
Этап 4.2
Поскольку является константой относительно , производная относительно равна .
Этап 5
Подставим в заданное дифференциальное уравнение.
Этап 6
Этап 6.1
Вынесем множитель из .
Этап 6.2
Сократим общие множители.
Этап 6.2.1
Возведем в степень .
Этап 6.2.2
Вынесем множитель из .
Этап 6.2.3
Сократим общий множитель.
Этап 6.2.4
Перепишем это выражение.
Этап 6.2.5
Разделим на .
Этап 7
Данное решение не удовлетворяет заданному дифференциальному уравнению.
не является решением уравнения