Введите задачу...
Математический анализ Примеры
Этап 1
Производная по равна .
Этап 2
Этап 2.1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2.2
Производная по равна .
Этап 2.3
Умножим на , сложив экспоненты.
Этап 2.3.1
Умножим на .
Этап 2.3.1.1
Возведем в степень .
Этап 2.3.1.2
Применим правило степени для объединения показателей.
Этап 2.3.2
Добавим и .
Этап 2.4
Производная по равна .
Этап 2.5
Возведем в степень .
Этап 2.6
Возведем в степень .
Этап 2.7
Применим правило степени для объединения показателей.
Этап 2.8
Добавим и .
Этап 2.9
Изменим порядок членов.
Этап 3
Чтобы найти локальные максимумы и минимумы функции, приравняем производную к и решим полученное уравнение.
Этап 4
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 5
Этап 5.1
Приравняем к .
Этап 5.2
Множество значений секанса: и . Поскольку не попадает в этот диапазон, решение отсутствует.
Нет решения
Нет решения
Этап 6
Этап 6.1
Приравняем к .
Этап 6.2
Решим относительно .
Этап 6.2.1
Возьмем обратный тангенс обеих частей уравнения, чтобы извлечь из тангенса.
Этап 6.2.2
Упростим правую часть.
Этап 6.2.2.1
Точное значение : .
Этап 6.2.3
Функция тангенса положительна в первом и третьем квадрантах. Для нахождения второго решения прибавим угол приведения из и найдем решение в четвертом квадранте.
Этап 6.2.4
Добавим и .
Этап 6.2.5
Решение уравнения .
Этап 7
Окончательным решением являются все значения, при которых верно.
Этап 8
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 9
Этап 9.1
Упростим каждый член.
Этап 9.1.1
Точное значение : .
Этап 9.1.2
Возведение в любую положительную степень дает .
Этап 9.1.3
Точное значение : .
Этап 9.1.4
Умножим на .
Этап 9.1.5
Точное значение : .
Этап 9.1.6
Единица в любой степени равна единице.
Этап 9.2
Добавим и .
Этап 10
— локальный минимум, так как вторая производная положительная. Это называется тестом второй производной.
— локальный минимум
Этап 11
Этап 11.1
Заменим в этом выражении переменную на .
Этап 11.2
Упростим результат.
Этап 11.2.1
Точное значение : .
Этап 11.2.2
Окончательный ответ: .
Этап 12
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 13
Этап 13.1
Упростим каждый член.
Этап 13.1.1
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте. Добавим минус к выражению, так как тангенс отрицательный во втором квадранте.
Этап 13.1.2
Точное значение : .
Этап 13.1.3
Умножим на .
Этап 13.1.4
Возведение в любую положительную степень дает .
Этап 13.1.5
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте. Добавим минус к выражению, так как секанс отрицательный во втором квадранте.
Этап 13.1.6
Точное значение : .
Этап 13.1.7
Умножим .
Этап 13.1.7.1
Умножим на .
Этап 13.1.7.2
Умножим на .
Этап 13.1.8
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте. Добавим минус к выражению, так как секанс отрицательный во втором квадранте.
Этап 13.1.9
Точное значение : .
Этап 13.1.10
Умножим на .
Этап 13.1.11
Возведем в степень .
Этап 13.2
Вычтем из .
Этап 14
— локальный максимум, так как вторая производная отрицательная. Это называется тестом второй производной.
— локальный максимум
Этап 15
Этап 15.1
Заменим в этом выражении переменную на .
Этап 15.2
Упростим результат.
Этап 15.2.1
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте. Добавим минус к выражению, так как секанс отрицательный во втором квадранте.
Этап 15.2.2
Точное значение : .
Этап 15.2.3
Умножим на .
Этап 15.2.4
Окончательный ответ: .
Этап 16
Это локальные экстремумы .
— локальный минимум
— локальный максимум
Этап 17